ENGINEER'S REPORT

FOR

RURAL OUTREACH CENTER

730 OLEAN ROAD EAST AURORA, NY 14052

Prepared for:
Fontanese Folts Aubrecht Ernst Architects PC
6395 West Quaker Street
Orchard Park, NY 14127

Prepared by:
C\&S ENGINEERS, INC.
141 Elm Street, Suite 100
Buffalo, NY 14203

May 14, 2021

Table of Contents

GENERAL 1
Existing Site Conditions 1
Proposed Site Conditions 1
PROPOSED FACILITIES 2
STORMWATER MANAGEMENT 2
SANITARY SEWER 4
WATER 5
100-YR FLOODPLAIN INFORMATION 6
APPENDIX A SITE LOCATION MAP
APPENDIX B STORMWATER CALCULATIONS
APPENDIX C SANITARY SEWER AND SEPTIC SYSTEM CALCULATIONS
APPENDIX D WATER CALCULATIONS
APPENDIX E FEMA FIRMette MAP

A. GENERAL

1. Existing Site Conditions:

The project site is located at 730 Olean Road, in the Town of Aurora, New York. The site is situated on a $7.20+/-$ acre parcel and consists of an existing metal clad trailer/ building, a storage shed, an asphalt paved parking lot for 6 vehicles, a gravel drive and lawn areas along the front of the parcel. The remainder of the site is heavily wooded. The site generally slopes in a southwesterly direction and consists of three drainage areas, a northern drainage area, a central drainage area and a southern drainage area. The northern drainage area consists mostly of wooded areas (trees and light underbrush). Stormwater runoff from the northern drainage area flows toward the existing property to the north/west. The central drainage area consists of the majority of the wooded area, along with the existing metal clad trailer/building, storage shed, asphalt parking lot and gravel drive. Stormwater runoff from the central drainage area flows overland to the existing ditch along Olean Road. The southern drainage area consists mostly of wooded areas. Stormwater runoff from the southern drainage area flows onto the adjacent property to the south.

The soils on the site, according to the United State Department of Agriculture's National Resources Conservation Service are Orpark silt loam (OrC) and Rhinebeck gravelly loam (RkB), which are both listed as Hydrologic Soil HSG "C/D". For dual hydrologic group soils, the first letter is for drained areas and the second is for undrained areas. Only soils that in their natural condition are in group D are assigned to dual classes.

2. Proposed Site Conditions:

Development will consist of removal of the existing metal clad trailer/building and storage shed and demolition of the existing asphalt paved parking lot and gravel drive to accommodate the construction of a single-story, 9,738 s.f. building along with site improvements. Site improvements include two asphalt paved parking lots to accommodate 60 parking spaces including 3 handicap accessible parking spaces, at concrete sidewalks, a stormwater detention basin, two bio-retention basins, a new septic system, new domestic and fire protection water services and site landscaping.

Upon completion, the proposed project will add 0.78 acres of new impervious cover and 0.43 acres of reconstructed impervious area. The total anticipated ground disturbance during construction of this project will be approximately 3.90 acres. Due to the increase in impervious areas, stormwater detention is required. Additionally, since the construction of this site will disturb more than one acre, a Storm Water Pollution Prevention Plan (SWPPP), in accordance with the New York State Department of Environmental Conservation (NYSDEC) standards will be prepared and a NOI (Notice of Intent) will be filed prior to beginning construction.

B. PROPOSED FACILITIES

1. Stormwater Management

a. Stormwater Conveyance

Under proposed conditions, stormwater runoff will continue to follow the existing drainage patterns. Stormwater runoff from the new building will be collected and treated within a bioretention basin and then piped to the stormwater detention basin. Stormwater runoff from the asphalt paved parking lots will be collected and treated within a bioretention basin located between the two parking lots and then piped to the stormwater detention basin. Stormwater runoff from the access drive and lawn areas will be collected and conveyed to the stormwater detention basin. Discharge from the stormwater detention basin will be conveyed to the existing roadside drainage ditch along Olean Road. Stormwater runoff from the upstream, undisturbed areas of the site will be routed around the site, within drainage swales, and conveyed to the existing roadside drainage ditch along Olean Road.

b. Quantity Control

New York State Department of Environmental Conservation regulations require design of stormwater detention facilities to limit the peak discharge produced by the 10 -year and 100 -year storm events to the pre-developed runoff rates, as well as provide extended detention of the $1-\mathrm{YR}, 24-\mathrm{HR}$ storm event (channel protection volume).

As mentioned above, stormwater runoff from the new building as well as the two parking lots will be conveyed to a stormwater detention basin. The stormwater detention basin has been sized for future site improvements that includes a 4,480 s.f. stand-alone building. Stormwater discharge from the detention basin is limited by a control structure that consists of a 12-inch diameter HDPE inlet pipe, a 7.4 -inch orifice, a 4 -foot long sharp crested weir and an 18-inch diameter HDPE outlet pipe.

The channel protection volume (CPv) requirement is relaxed for redevelopment projects with an increase in impervious area. The post development 1-YR storm event discharge rate will be less than the pre-development $1-\mathrm{YR}$ storm event discharge rate.

The stormwater detention calculations were completed using HYDROCAD, version 10 software. Following is a summary of the pre and post development discharge rates and associated detention volumes and water surface elevations:

Discharge to Olean Road Drainage Ditch:

Storm Event	Pre-Development Discharge (cfs)	Post-Development Discharge (cfs)	Detention Volume (cf)	Water Surface Elevation (feet)
1-YR	2.65	2.63	1,181	885.79
$10-\mathrm{YR}$	8.55	8.41	4,564	886.73
$100-\mathrm{YR}$	20.37	20.25	8,164	887.36

Discharge to South:

Storm Event	Pre-Development Discharge (cfs)	Post-Development Discharge (cfs)
$1-\mathrm{YR}$	0.13	0.12
$10-\mathrm{YR}$	0.52	0.49
$100-\mathrm{YR}$	1.36	1.29

Quality Control:

Chapters 3-5 of the NYSDEC Stormwater Management Design Manual (SMDM) provides a green infrastructure approach to stormwater management to reduce a site's impact on the aquatic ecosystem through the use of site planning techniques, runoff reduction techniques, and standard SMP's. Runoff Reduction Volume (RRv) is the reduction of the total Water Quality Volume (WQv) by application of green infrastructure techniques and SMP's to replicate pre-development hydrology.

The NYSDEC SMDM's intent is for projects to meet 100% of runoff reduction volume through the use of green infrastructure techniques. Projects that do not achieve runoff reduction to pre-construction condition must, at a minimum, provide the minimum RRv as well as provide the remaining WQv in standard SMPs.

Two (2) bio-retention facilities will be used to treat impervious areas on-site to offset the WQv and RRv required by the new impervious area and reconstructed impervious area from the total site disturbance area.

The minimum RRv requirement has been attained through the use of the bioretention facilities. Additionally, the required water quality treatment volume will be provided in the bio-retention facilities. This project is considered a redevelopment project with an increase in impervious area. Therefore, per Chapter 9.2.1.B.II, a standard SMP will be used to treat 100% of the WQv from new impervious areas and 25% of the WQv from reconstructed impervious areas.

Below is a summary of the water quality volume and runoff reduction volumes attained on site:
25% WQv req'd from reconstructed impervious using standard SMP:

$$
0.25(1,483 \mathrm{cf})=371 \mathrm{cf}
$$

Minimum Runoff Reduction Volume Required (RRv, min) 538 cf
East Bioretention Basin:

$W Q_{v}$ Required	$2,000 \mathrm{cf}$
$W Q Q_{v}$ Provided	$1,200 \mathrm{cf}$
RR_{v} Provided	800 cf

RR_{v} Provided
800 cf
(Standard SMP with Runoff Reduction Volume)

- due to HSG D soils, $\mathrm{RRv}=40 \% \mathrm{WQv}$ for bioretention basins

North Bioretention Basin:
WQ_{v} Required $\quad 1,228 \mathrm{cf}$
WQ_{v} Provided 737 cf
RR $_{\mathrm{v}}$ Provided 491 cf
(Standard SMP with Runoff Reduction Volume)

- due to HSG D soils, $\mathrm{RRv}=40 \% \mathrm{WQv}$ for bioretention basins

Total RRv Provided:
 $1,291 \mathrm{cf}$

Total WQv Provided (WQv provided + RRv provided):
3,228 cf

Stormwater calculations are included in Appendix B.

2. Sanitary Sewer

Public sewer is not available in the vicinity of the site. Currently, the existing metal clad trailer/building discharges to an existing holding tank which gets emptied periodically and when necessary.

A new sand filter and downstream absorption trench septic system has been designed for the site. As per Erie County Health Department and NYSDEC requirements, a 6-foot deep hole test was performed. The deep hole test confirmed that bedrock is greater than 30-inches below existing grade at the location of the proposed sand filter. (no bedrock was encountered at the depth of the deep hole tests, which terminated at 12 feet below existing grade). In conducting the percolation tests, one of the three perc tests failed (water elevation did not drop from presoak, after 24 hours). Accordingly, a sand filter system with downstream absorption trenches have been designed. Refer to Appendix C for the reports. The septic system will consist of a 1,500 gallon, septic tank and effluent pump to an intermittent sand filter with (8) 40 lf distribution lines followed by (6) 57 lf long downstream "modified" shallow absorption trenches. A design flow of $960 \mathrm{gal} / \mathrm{day}$ has been calculated based on the worst case sewer loading scenario. See septic calculations in Appendix C. The new septic system design will be submitted to the Erie County Health Department for their review and approval.

Design Parameters -

1) Hydraulic Loading Rate per "Design Standards for Intermediate Sized Wastewater Treatment Systems", 2014, NYSDEC.
2) Loading Rates:

Church/multi-purpose $=2.4 \mathrm{gpd} /$ seat $(3 \mathrm{gpd} /$ seat reduced by 20% w/using water saving plumbing fixtures)
Office $=12 \mathrm{gpd} /$ employee $(15 \mathrm{gpd} / \mathrm{employee}$ reduced by $20 \% \mathrm{w} / \mathrm{using}$ water saving plumbing fixtures)
Classroom $=8 \mathrm{gpd} /$ seat ($10 \mathrm{gpd} /$ seat reduced by $20 \% \mathrm{w} / \mathrm{using}$ water saving plumbing fixtures)
Kitchen/Banquet $=8 \mathrm{gpd} /$ seat $(10 \mathrm{gpd} /$ seat reduced by $20 \% \mathrm{w} / \mathrm{using}$ water saving plumbing fixtures)
3) Facilities/employees:

Offices $=14$ full-time staff and 8 full-time visitors $=22$ people
Classrooms $=2$ classrooms w/ 10 people/room $=20$ people
Church $=120$ people total (including staff)
Banquet $=120$ people total (including staff)
4) Design Flow Scenarios:

Scenario \#1: continuation of existing counseling services (office and classrooms)

$$
\begin{gathered}
\text { Average daily flow }=\underset{\text { consumption records }}{100 \text { gpd (per existing ECWA }}
\end{gathered}
$$

Scenario \#2: Church Service
Average daily flow $=(120$ people $)(2.4 \mathrm{gpd} /$ person $)=288 \mathrm{gpd}$
Scenario \#3: Banquet Event
Average daily flow $=(120$ people $)(8 \mathrm{gpd} /$ person $)=960 \mathrm{gpd}$

Use Average Daily Flow = 960 gpd

5) \quad Peak Factor $=4.22$
6) Peak Hourly Flow = (Average Daily Flow)(Peak Factor)

$$
=(960 \mathrm{gpd})(4.22)=4,051 \mathrm{gpd}=5.6 \mathrm{gpm}
$$

3. Water System

The existing 8-inch watermain along Olean Road will be tapped off of with a 6-inch tapping sleeve and valve. The 6 -inch water service will be split at the property line into a 6 -inch CL52 ductile iron private fire service and a 3 inch CL52 ductile iron domestic water service. Both services will enter into a Hotbox Enclosure located near the northwest corner of the site to provide backflow protection requirements. The 6 -inch private fire service will be backflow protected with a 4-inch Watts LF757 DCDA. The 3-inch domestic service will have a 2 -inch Neptune T-10 meter and be backflow protected with a $21 / 2$-inch Watts LF957

RPZ. Both services will exit out of the Hotbox Enclosure and transition from ductile iron to AWWA C900 PVC (for private fire service) and AWWA C901 PE pipe (for domestic water service) and continue along the northern portion of the property, then enter into the building.

Design Criteria (Appendix D):

1)	Domestic Peak Operating Demand: (use 80 gpm per plumbing engineer's fixture unit	$\begin{aligned} & 5.6 \mathrm{gpm} \\ & \text { lculations) } \end{aligned}$
2)	Static Pressure in 8-inch watermain on Olean Road:	64 psi
3)	Residual Flow in 8-inch watermain on Olean Road:	1,138 gpm
		w/ 56 psi residual
4)	Friction Loss through 3-inch domestic service:	2.4 psi
5)	Friction Loss through fittings	1 psi
6)	Friction Loss due to elevation:	8.2 psi
7)	Friction Loss through 2-inch Neptune T-10 meter:	2.5 psi
8)	Friction Loss through $21 / 2$-inch Watts LF957 RPZ:	10 psi
9)	Residual Pressure @ building for domestic service:	31.8 psi
Assuming 500 gpm fire flow required (per plumbing engineer):		
10)	Friction Loss through 6" fire service:	2.5 psi
11)	Friction Loss through fittings	1 psi
12)	Friction Loss due to elevation:	8.2 psi
13)	Friction Loss through 4-inch Watts LF757 DCDA	8 psi
14)	Residual Pressure @ bldg. for fire service with 500 gpm fire flow:	36.3 psi

(Static pressure, residual pressure and flow within the 8 -inch watermain was provided by the Erie County Water Authority. Hydrant Flow Test was performed on 11/10/2009.)

Disinfection of water services following construction will be continuous feed, in accordance with AWWA C-651, latest revision requirements. Water demand calculations are included in Appendix D.

4. 100-YR Floodplain Information

The site is not located in a 100-year flood plain.
Respectfully Submitted,

APPENDIX A

SITE LOCATION MAP

APPENDIX B

STORMWATER CALCULATIONS

Discharge to Olean
Road Drainage Ditch

Subcatchment Area 1B

Discharge to South

Existing Drainage Analysis

Prepared by C\&S Engineers, Inc.
Printed 5/14/2021
HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC
Page 2

Event\#	Event Name	Rainfall Events Listing						
		Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1 yr	Type II 24-hr		Default	24.00	1	1.88	2
2	10yr	Type II 24-hr		Default	24.00	1	3.15	2
3	100yr	Type II 24-hr		Default	24.00	1	5.25	2

Existing Drainage Analysis

Prepared by C\&S Engineers, Inc.
Printed 5/14/2021
HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC
Page 3

Pipe Listing (selected nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1 BS	0.00	0.00	163.0	0.0500	0.025	12.0	0.0	0.0

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff $=\quad 0.83$ cfs @ 12.20 hrs, Volume $=0.087$ af, Depth= $0.35^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1yr Rainfall=1.88"

Subcatchment 1AS: Subcatchment Area 1A

- Runoff

Summary for Subcatchment 1BS: Subcatchment Area 1B

Runoff $=\quad 1.82$ cfs @ 12.20 hrs, Volume $=\quad 0.168$ af, Depth= $0.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1yr Rainfall=1.88"

Subcatchment 1BS: Subcatchment Area 1B

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff $=0.13$ cfs @ 12.16 hrs, Volume $=0.012$ af, Depth $=0.32{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1yr Rainfall=1.88"

Area (ac) CN Description						
$\begin{array}{lll} \hline 0.234 & 77 & \mathrm{~W} \\ 0.215 & 73 & \mathrm{Br} \\ \hline \end{array}$			Woods, Good, HSG D Brush, Good, HSG D			
$\begin{aligned} & 0.449 \\ & 0.449 \end{aligned}$		75 W	Weighted Average 100.00\% Pervious Area		Description	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)		
15.0	100	0.0780	0.11		Sheet Flow, AB Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=2.20$
4.0	232	0.0377	0.97		Shallow Concentrated Flow, BC Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
19.0	332	Total				

Subcatchment 2S: Subcatchment Area 2

Existing Drainage Analysis
Prepared by C\&S Engineers, Inc.
HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 1P: Discharge to Olean Road Drainage Ditch

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind method, Time Span=5.00-30.00 hrs, dt= 0.05 hrs
Pond 1P: Discharge to Olean Road Drainage Ditch

Existing Drainage Analysis
Prepared by C\&S Engineers, Inc.
HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs
Pond 2P: Discharge to South
Hydrograph

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff $=\quad 3.23$ cfs @ 12.17 hrs, Volume $=0.275$ af, Depth= $1.12^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10yr Rainfall=3.15"

Subcatchment 1AS: Subcatchment Area 1A

- Runoff

Existing Drainage Analysis

Summary for Subcatchment 1BS: Subcatchment Area 1B

[47] Hint: Peak is 129% of capacity of segment \#3
Runoff $=5.33$ cfs @ 12.18 hrs, Volume= 0.454 af, Depth= $1.43{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs
Type II 24-hr 10yr Rainfall=3.15"

Subcatchment 1BS: Subcatchment Area 1B

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff $=\quad 0.52$ cfs @ 12.13 hrs, Volume $=0.040$ af, Depth= $1.06{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10yr Rainfall=3.15"

Subcatchment 2S: Subcatchment Area 2

Existing Drainage Analysis

Summary for Pond 1P: Discharge to Olean Road Drainage Ditch

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs
Pond 1P: Discharge to Olean Road Drainage Ditch

- Inflow - Primary

Existing Drainage Analysis

Summary for Pond 2P: Discharge to South
[40] Hint: Not Described (Outflow=Inflow)
Inflow Area $=0.449 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=1.06$ " for $10 y r$ event
Inflow $=0.52$ cfs @ 12.13 hrs , Volume= 0.040 af
Primary $=0.52 \mathrm{cfs} @ 12.13 \mathrm{hrs}$, Volume $=0.040 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs
Pond 2P: Discharge to South
Hydrograph

- Inflow
- Primary

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff $=\quad 8.27$ cfs @ 12.16 hrs, Volume $=\quad 0.674$ af, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100yr Rainfall=5.25"

Area (ac) CN Description							
$\begin{aligned} & 2.042 \\ & 0.907 \end{aligned}$			Woods, Good, HSG D Brush, Good, HSG D				
$\begin{aligned} & \hline 2.949 \\ & 2.949 \end{aligned}$			Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description		
5.6	42	0.1607	0.12		Sheet Flow, AB		
					Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=2.20{ }^{\prime \prime}$	
9.3	58	0.0870	0.10		Sheet Flow, BC		
					Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=2.20{ }^{\prime \prime}$	
3.4	232	0.0518	1.14		Shallow Concentrated Flow, CD		
					Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$		
4.6	277	0.0405	1.01		Shallow Concentrated Flow, DE Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$		
22.9	609	Total			Woodland Kv 5.0 ps		

Subcatchment 1AS: Subcatchment Area 1A

- Runoff

Existing Drainage Analysis

Summary for Subcatchment 1BS: Subcatchment Area 1B
[47] Hint: Peak is 292% of capacity of segment \#3
Runoff $=\quad 12.11$ cfs @ 12.17 hrs, Volume $=1.018$ af, Depth= $3.21^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100yr Rainfall=5.25"

Subcatchment 1BS: Subcatchment Area 1B

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff $=\quad 1.36$ cfs @ 12.12 hrs, Volume= $\quad 0.099$ af, Depth= 2.65"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100yr Rainfall=5.25"

Area (ac) CN Description						
$\begin{aligned} & 0.234 \\ & 0.215 \end{aligned}$		7 Woods, Good, HSG D 3 Brush, Good, HSG D				
$\begin{aligned} & \hline 0.449 \\ & 0.449 \end{aligned}$		Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description	
15.0	100	0.0780	0.11		Sheet Flow, AB Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=2.20{ }^{\prime \prime}$
4.0	232	0.0377	0.97		Shallow Concentrated Flow, BC Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
19.0	332	Total				

Subcatchment 2S: Subcatchment Area 2

Existing Drainage Analysis

Summary for Pond 1P: Discharge to Olean Road Drainage Ditch

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs
Pond 1P: Discharge to Olean Road Drainage Ditch

- Inflow - Primary

Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.449 ac,	0.00% Impervious, Inflow Depth $=2.65 \mathrm{c}$ for 100 yr event		
Inflow	$=$	$1.36 \mathrm{cfs} @$	12.12 hrs, Volume $=$	0.099 af
Primary	$=$	$1.36 \mathrm{cfs} @$	12.12 hrs, Volume $=$	0.099 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span=5.00-30.00 hrs, dt= 0.05 hrs

Pond 2P: Discharge to South

Hydrograph

- Inflow
- Primary

Proposed Drainage Analysis

Prepared by C\&S Engineers, Inc.
HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

Rainfall Events Listing

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)
1	1yr	Type II 24-hr	Default	24.00	1	1.88	2
2	10yr	Type II 24-hr	Default	24.00	1	3.15	2
3	100yr	Type II 24-hr	Default	24.00	1	5.25	2

Proposed Drainage Analysis

Prepared by C\&S Engineers, Inc.
HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC
Pipe Listing (selected nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1BP	884.50	884.00	26.0	0.0192	0.013	18.0	0.0	0.0
2	1BP	884.50	884.50	21.0	0.0000	0.013	12.0	0.0	0.0
3	1CP	898.00	896.81	134.0	0.0089	0.013	12.0	0.0	0.0
4	1CP	898.00	898.00	120.0	0.0000	0.013	6.0	0.0	0.0
5	1 DP	898.00	898.00	38.0	0.0000	0.013	6.0	0.0	0.0
6	1EP	893.50	885.00	109.0	0.0780	0.013	18.0	0.0	0.0
7	1EP	896.81	893.50	196.0	0.0169	0.013	18.0	0.0	0.0

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff $=\quad 0.15 \mathrm{cfs} @ 12.22 \mathrm{hrs}$, Volume= $\quad 0.018$ af, Depth= $0.30{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Area (ac) CN Description						
$\begin{aligned} & 0.173 \\ & 0.548 \\ & \hline \end{aligned}$		Woods, Good, HSG D Brush, Good, HSG D				
$\begin{aligned} & 0.721 \\ & 0.721 \end{aligned}$			Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
17.5	100	0.0535	0.10		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=2.20 "$
5.8	405	0.0535	1.16		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
23.3	505	Total				

Subcatchment 1AS: Subcatchment Area 1A

Summary for Subcatchment 1BS: Subcatchment Area 1B

Runoff $=\quad 1.07$ cfs @ 12.23 hrs, Volume $=\quad 0.111$ af, Depth= $0.42^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

| Area (ac) | CN | Description | |
| ---: | ---: | :--- | :--- | :--- |
| 1.534 | 77 | Woods, Good, HSG D | |
| 0.352 | 73 | Brush, Good, HSG D | |
| 1.200 | 80 | >75\% Grass cover, Good, HSG D | |
| 0.104 | 98 | Paved parking, HSG D | |

Subcatchment 1BS: Subcatchment Area 1B

Summary for Subcatchment 1CS: Subcatchment Area 1C

Runoff $=\quad 1.75$ cfs @ 11.97 hrs, Volume $=0.084$ af, Depth= $1.21{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Area	(ac)	CN	Description			
	585	98	Paved parking, HSG D			
	250	80	>75	\% Grass c	ver, Good	HSG D
	835	93	Weighted Average			
	250		29.94\% Pervious Area			
	. 58		70.06\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Subcatchment 1CS: Subcatchment Area 1C

Summary for Subcatchment 1DS: Subcatchment Area 1D

Runoff $=\quad 0.98 \mathrm{cfs} @ 11.97 \mathrm{hrs}$, Volume $=\quad 0.048$ af, Depth= $1.28{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Subcatchment 1DS: Subcatchment Area 1D

Summary for Subcatchment 1ES: Subcatchment Area 1E

Runoff $=\quad 1.35$ cfs @ 12.03 hrs, Volume $=0.075$ af, Depth= $0.57^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Subcatchment 1ES: Subcatchment Area 1E

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff $=\quad 0.12$ cfs @ 12.16 hrs, Volume= 0.011 af, Depth= $0.32{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Area (ac) CN Description						
0.220 77 0.205 73		Woods, Good, HSG D Brush, Good, HSG D				
$\begin{aligned} & 0.425 \\ & 0.425 \end{aligned}$		Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
15.0	100	0.0780	0.11		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=2.20 "$
4.1	237	0.0377	0.97		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
19.1	337	Total				

Subcatchment 2S: Subcatchment Area 2

Summary for Pond 1AP: Discharge to Olean Road

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 1AP: Discharge to Olean Road

Hydrograph

Summary for Pond 1BP: Detention Pond

[79] Warning: Submerged Pond 1EP Primary device \# 1 OUTLET by 0.79'

Inflow Area $=$	$2.863 \mathrm{ac}, 39.50 \%$ Impervious, Inflow Depth $>0.76 "$ for 1 yr event	
Inflow	$=$	$3.47 \mathrm{cfs} @ 12.02 \mathrm{hrs}$, Volume=
Outflow	$=$	$1.43 \mathrm{cfs} @$
Primary	$=$	12.16 hrs , Volume=
	$1.43 \mathrm{cfs} @$	12.16 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2
Peak Elev= 885.79' @ 12.16 hrs Surf.Area= 2,337 sf Storage= 1,181 cf
Plug-Flow detention time $=5.1 \mathrm{~min}$ calculated for 0.180 af (100% of inflow)
Center-of-Mass det. time $=4.9 \mathrm{~min}(906.6-901.7)$

Pond 1BP: Detention Pond

Hydrograph

Summary for Pond 1CP: East Bioretention Basin

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs $/ 2$
Peak Elev= 902.14' @ 12.03 hrs Surf.Area= 2,412 sf Storage= 1,287 cf
Plug-Flow detention time $=197.8 \mathrm{~min}$ calculated for 0.067 af (80% of inflow)
Center-of-Mass det. time $=117.2 \mathrm{~min}(926.6-809.4)$

Volume	Inver		Avail.Sto	Storage	Storage Descripti		
\#1	901.50	' 4,064 cf			Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet)		$\begin{aligned} & \text { Surf.Area } \\ & \text { (sa-ft } \end{aligned}$		Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
901.50		1,722	22	271.0	0	0	1,722
902.00		2,19	91	290.0	976	976	2,582
903.00		4,082	82	370.0	3,088	4,064	6,796
Device	Routing	Invert		ert Outlet Devices			
\#1	Primary	898.00'		O' 12.0" Round Culvert			
				Inlet / Outlet Invert= 898.00' / 896.81' S=0.0089 '/l' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf			
\#2	Device 1	898.00'		O' 6.0" Round Underdrain			
				L= 120.0' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$			
				Inlet / Outlet Invert= 898.00' / 898.00' S=0.0000 '/l' Cc= 0.900			
\#3	Device 2	901.50'		$0^{\prime} \quad 0.250 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area			
	Device 1			Conductivity to Groundwater Elevation $=800.00{ }^{\prime}$			
\#4		$902.00{ }^{\prime}$		(0' $\begin{aligned} & \text { 24.0" } \times 24.0 \text { " Horiz. Orifice/Grate } \\ & \text { Limited to weir flow at low heads }\end{aligned}$			

Primary OutFlow Max=1.31 cfs @ 12.03 hrs HW=902.13' (Free Discharge)
-1=Culvert (Passes 1.31 cfs of 5.30 cfs potential flow)
-2=Underdrain (Passes 0.01 cfs of 0.89 cfs potential flow)
-3=Exfiltration (Controls 0.01 cfs)
4=Orifice/Grate (Weir Controls 1.30 cfs @ 1.20 fps)

Pond 1CP: East Bioretention Basin

Summary for Pond 1DP: North Bioretention Basin

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev= 902.10' @ 12.02 hrs Surf.Area= 1,360 sf Storage= 729 cf
Plug-Flow detention time $=208.4$ min calculated for 0.037 af (79% of inflow)
Center-of-Mass det. time $=124.7 \mathrm{~min}(927.7-802.9)$

Volume	Invert Ava	Storage	Storage Descripti		
\#1	901.50'	2,159 cf	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
901.50	1,080	152.0	0	0	1,080
902.00	1,314	161.0	598	598	1,317
903.00	1,822	180.0	1,561	2,159	1,860

Device	Routing	Invert	Outlet Devices
\#1	Primary	898.00'	6.0" Round Culvert
			$\mathrm{L}=38.0$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 898.00' / 898.00' S=0.0000 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	901.50'	$0.250 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 800.00'
\#3	Secondary	902.00'	24.0" \times 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads

Primary OutFlow Max=0.01 cfs @ 12.02 hrs HW=902.10' (Free Discharge)
$\tau_{1=C u l v e r t ~(P a s s e s ~}^{0.01} \mathrm{cfs}$ of 1.35 cfs potential flow)
L2=Exfiltration (Controls 0.01 cfs)
Secondary OutFlow Max=0.80 cfs @ 12.02 hrs HW=902.10' (Free Discharge)
—3=Orifice/Grate (Weir Controls 0.80 cfs @ 1.02 fps)

Pond 1DP: North Bioretention Basin

Summary for Pond 1EP: Conveyance Pipe

[79] Warning: Submerged Pond 1CP Primary device \# 1 OUTLET by 0.76 '

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev= 897.57' @ 12.02 hrs
Flood Elev= 902.50'

Device	Routing	Invert	Outlet Devices		
\#1	Primary	893.50'	18.0" Round Culvert		
			$\mathrm{L}=109.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$		
			Inlet / Outlet Invert= 893.50' / 885.00' S=0.0780 '/' Cc= 0.900		
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf		
\#2	Device 1	896.81'	18.0" Round Culvert		
			L= 196.0' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$		
			Inlet / Outlet Invert= 896.81' / 893.50' S=0.0169 '/' Cc= 0.900		
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf		
Primary OutFlow Max=2.11 cfs @ 12.02 hrs HW=897.57' (Free Discharge) —1 $_{1=C u l v e r t ~(P a s s e s ~}^{2.11}$ cfs of 12.24 cfs potential flow) 					

Pond 1EP: Conveyance Pipe

Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.425 ac,	0.00% Impervious, Inflow Depth $=0.32 \mathrm{ln}$ for 1 yr event	
Inflow	$=$	$0.12 \mathrm{cfs} @$	12.16 hrs, Volume $=$
Primary	$=$	$0.12 \mathrm{cfs} @$	12.16 hrs, Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Pond 2P: Discharge to South
Hydrograph

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff $=\quad 0.69$ cfs @ 12.19 hrs, Volume $=0.060$ af, Depth= $1.00{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Area (ac) CN Description						
0.173 77 W 0.548 73 B 0.721 74			Woods, Good, HSG D Brush, Good, HSG D			
$\begin{aligned} & 0.721 \\ & 0.721 \end{aligned}$		Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
17.5	100	0.0535	0.10		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=2.20 "$
5.8	405	0.0535	1.16		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
23.3	505	Total				

Subcatchment 1AS: Subcatchment Area 1A

Summary for Subcatchment 1BS: Subcatchment Area 1B

Runoff $=\quad 3.68$ cfs @ 12.20 hrs, Volume $=\quad 0.329$ af, Depth= $1.24{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Subcatchment 1BS: Subcatchment Area 1B

Summary for Subcatchment 1CS: Subcatchment Area 1C

Runoff $=\quad 3.35$ cfs @ 11.97 hrs, Volume $=0.167$ af, Depth= $2.40{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Area	(ac)	CN	Description			
	585	98	Paved parking, HSG D			
	250	80	>75\% Grass cover, Good, HSG D			
	835	93	Weighted Average 29.94\% Pervious Area 70.06\% Impervious Area			
	250					
	585					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0						Direct Entry

Subcatchment 1CS: Subcatchment Area 1C

Summary for Subcatchment 1DS: Subcatchment Area 1D

Runoff $=\quad 1.83$ cfs @ 11.97 hrs, Volume= 0.092 af, Depth= 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Subcatchment 1DS: Subcatchment Area 1D

Summary for Subcatchment 1ES: Subcatchment Area 1E

Runoff $=\quad 3.65$ cfs @ 12.02 hrs, Volume $=\quad 0.198$ af, Depth= $1.50{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Area (ac) CN Description					
$\begin{aligned} & 1.395 \\ & 0.189 \\ & \hline \end{aligned}$		>75\% Grass cover, Good, HSG D Paved parking, HSG D			
$\begin{aligned} & 1.584 \\ & 1.395 \\ & 0.189 \end{aligned}$		2 Weighted Average 88.07\% Pervious Area 11.93\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.9	65	0.0310	1.25		Sheet Flow, Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.20$ "
5.3	35	0.0460	0.11		Sheet Flow, Grass: Dense n=0.240 P2=2.20"
3.9	353	0.0460	1.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps

Subcatchment 1ES: Subcatchment Area 1E

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff $=\quad 0.49$ cfs @ 12.12 hrs, Volume= 0.038 af, Depth= $1.06{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Subcatchment 2S: Subcatchment Area 2

Summary for Pond 1AP: Discharge to Olean Road

[40] Hint: Not Described (Outflow=Inflow)
Inflow Area $=6.774$ ac, 18.23% Impervious, Inflow Depth > 1.45" for 10yr event
Inflow = 8.41 cfs @ 12.14 hrs, Volume= 0.819 af

Primary =
8.41 cfs @ 12.14 hrs, Volume= 0.819 af, Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 1AP: Discharge to Olean Road

Hydrograph

- Inflow - Primary

Summary for Pond 1BP: Detention Pond

[79] Warning: Submerged Pond 1EP Primary device \# 1 OUTLET by 1.73'

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs $/ 2$
Peak Elev= 886.73' @ 12.11 hrs Surf.Area= 4,865 sf Storage= $4,564 \mathrm{cf}$
Plug-Flow detention time $=12.3$ min calculated for 0.430 af (100% of inflow)
Center-of-Mass det. time $=12.2 \min (857.8-845.6)$

Pond 1BP: Detention Pond

Summary for Pond 1CP: East Bioretention Basin

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs $/ 2$
Peak Elev= 902.24' @ 12.00 hrs Surf.Area= 2,593 sf Storage= $1,551 \mathrm{cf}$
Plug-Flow detention time $=113.7$ min calculated for 0.150 af (90% of inflow)
Center-of-Mass det. time $=62.8 \mathrm{~min}(852.8-790.0)$

Primary OutFlow Max=3.10 cfs @ 12.00 hrs HW=902.24' (Free Discharge)
-1=Culvert (Passes 3.10 cfs of 5.37 cfs potential flow)
-2=Underdrain (Passes 0.02 cfs of 0.90 cfs potential flow)
-3=Exfiltration (Controls 0.02 cfs)
4=Orifice/Grate (Weir Controls 3.09 cfs @ 1.60 fps)

Pond 1CP: East Bioretention Basin

Inflow Area=0.835 ac Peak Elev=902.24' Storage $=1,551$ cf

Summary for Pond 1DP: North Bioretention Basin

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev=902.16' @ 11.99 hrs Surf.Area= 1,392 sf Storage= 821 cf
Plug-Flow detention time $=122.3 \mathrm{~min}$ calculated for 0.082 af (89% of inflow)
Center-of-Mass det. time $=67.4 \mathrm{~min}(851.7-784.4)$

Volume	Invert Ava	Storage	Storage Descripti		
\#1	901.50'	2,159 cf	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
901.50	1,080	152.0	0	0	1,080
902.00	1,314	161.0	598	598	1,317
903.00	1,822	180.0	1,561	2,159	1,860

Device	Routing	Invert	Outlet Devices
\#1	Primary	898.00'	6.0" Round Culvert
			$\mathrm{L}=38.0$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 898.00' / 898.00' S=0.0000 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	901.50	Conductivity to Groundwater Elevation = 800.00'
\#3	Secondary	902.00'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=0.01 cfs @ 11.99 hrs HW=902.16' (Free Discharge)
$\mathcal{L}_{1}=$ Culvert (Passes 0.01 cfs of 1.36 cfs potential flow)
L2=Exfiltration (Controls 0.01 cfs)
Secondary OutFlow Max=1.75 cfs @ 11.99 hrs HW=902.16' (Free Discharge)
—3=Orifice/Grate (Weir Controls 1.75 cfs @ 1.33 fps)

Pond 1DP: North Bioretention Basin

Summary for Pond 1EP: Conveyance Pipe

[79] Warning: Submerged Pond 1CP Primary device \# 1 INLET by 0.08'
[79] Warning: Submerged Pond 1DP Primary device \# 1 by 0.08'

Routing by Stor-Ind method, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs} / 2$
Peak Elev=898.09' @ 11.99 hrs
Flood Elev= 902.50'

Pond 1EP: Conveyance Pipe

Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.425 ac,	0.00% Impervious, Inflow Depth $=1.06 \mathrm{ct}$ for 10 yr event	
Inflow	$=$	$0.49 \mathrm{cfs} @$	12.12 hrs, Volume $=$
Primary	$=$	$0.49 \mathrm{cfs} @$	12.12 hrs, Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-30.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Pond 2P: Discharge to South
Hydrograph

- Inflow
- Primary

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff $=\quad 1.87$ cfs @ 12.17 hrs, Volume= $\quad 0.154$ af, Depth= 2.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Area (ac) CN Description						
$\begin{aligned} & 0.173 \\ & 0.548 \end{aligned}$		Woods, Good, HSG D Brush, Good, HSG D				
$\begin{aligned} & 0.721 \\ & 0.721 \end{aligned}$		Weighted Average 100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
17.5	100	0.0535	0.10		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=2.20{ }^{\prime \prime}$
5.8	405	0.0535	1.16		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
23.3	505	Total				

Subcatchment 1AS: Subcatchment Area 1A

Summary for Subcatchment 1BS: Subcatchment Area 1B

Runoff $=8.97$ cfs @ 12.20 hrs, Volume $=0.778$ af, Depth= $2.93{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Subcatchment 1BS: Subcatchment Area 1B

Summary for Subcatchment 1CS: Subcatchment Area 1C

Runoff $=5.96$ cfs @ 11.97 hrs, Volume= 0.309 af, Depth $=4.44{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac)	CN	Description			
	585	98	Paved parking, HSG D			
	250	80	>75	\% Grass c	ver, Good	HSG D
	835	93	Weighted Average			
	250		29.94\% Pervious Area			
	. 58		70.06\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Subcatchment 1CS: Subcatchment Area 1C

Summary for Subcatchment 1DS: Subcatchment Area 1D

Runoff $=3.21$ cfs @ 11.97 hrs, Volume= 0.169 af, Depth= 4.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac)	CN	Description			
	357	98	Paved parking, HSG D			
	087	80	>75	\% Grass c	ver, Good	HSG D
	. 444	94	Weighted Average			
	087		19.59\% Pervious Area			
	357		80.41\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Subcatchment 1DS: Subcatchment Area 1D

Summary for Subcatchment 1ES: Subcatchment Area 1E

Runoff $=\quad 7.93$ cfs @ 12.02 hrs, Volume $=0.436$ af, Depth= 3.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"
$\left.\begin{array}{rrrl}\text { Area (ac) } & \text { CN } & \text { Description } \\ \hline 1.395 & 80 & \begin{array}{l}>75 \% \\ \text { Prass cover, Good, HSG D } \\ 0.189\end{array} & 98\end{array} \begin{array}{rl}\text { Paved parking, HSG D }\end{array}\right]$

Subcatchment 1ES: Subcatchment Area 1E

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff = 1.29 cfs @ 12.12 hrs, Volume= 0.094 af, Depth= 2.65"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Subcatchment 2S: Subcatchment Area 2

Summary for Pond 1AP: Discharge to Olean Road

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 1AP: Discharge to Olean Road

Hydrograph

Summary for Pond 1BP: Detention Pond

[79] Warning: Submerged Pond 1EP Primary device \# 1 OUTLET by 2.36'

Inflow Area $=$	$2.863 \mathrm{ac}, 39.50 \%$ Impervious, Inflow Depth $>3.72 "$ for 100 yr event		
Inflow	$=$	$16.34 \mathrm{cfs} @$	12.01 hrs , Volume $=$
Outflow	$=$	$9.76 \mathrm{cfs} @$	12.10 hrs , Volume $=$
Primary	$=$	$9.76 \mathrm{cfs} @$	12.10 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev= 887.36' @ 12.10 hrs Surf.Area= $6,329 \mathrm{sf}$ Storage= $8,164 \mathrm{cf}$
Plug-Flow detention time $=11.4 \mathrm{~min}$ calculated for 0.887 af (100% of inflow)
Center-of-Mass det. time $=11.4 \mathrm{~min}(827.2-815.9)$

Pond 1BP: Detention Pond

Summary for Pond 1CP: East Bioretention Basin

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs $/ 2$
Peak Elev= 902.36' @ 12.00 hrs Surf.Area= 2,809 sf Storage= 1,880 cf
Plug-Flow detention time $=75.1 \mathrm{~min}$ calculated for 0.292 af (95% of inflow)
Center-of-Mass det. time $=43.8 \mathrm{~min}(817.2-773.4)$

Primary OutFlow Max=5.44 cfs @ 12.00 hrs HW=902.36' (Free Discharge)
—1=Culvert (Barrel Controls 5.44 cfs @ 6.93 fps)
-2=Underdrain (Passes < 0.92 cfs potential flow)
-3=Exfiltration (Passes < 0.02 cfs potential flow)
4=Orifice/Grate (Passes < 5.71 cfs potential flow)

Pond 1CP: East Bioretention Basin

Summary for Pond 1DP: North Bioretention Basin

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev= 902.24' @ 11.99 hrs Surf.Area= 1,429 sf Storage= 929 cf
Plug-Flow detention time $=82.1 \mathrm{~min}$ calculated for 0.158 af (94% of inflow)
Center-of-Mass det. time $=47.2 \mathrm{~min}(815.8-768.6)$

Volume	Invert Ava	Storage	Storage Description		
\#1	901.50'	2,159 cf	Custom Stage Data (Irregular)Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
901.50	1,080	152.0	0	0	1,080
902.00	1,314	161.0	598	598	1,317
903.00	1,822	180.0	1,561	2,159	1,860

Device	Routing	Invert	Outlet Devices
\#1	Primary	898.00'	6.0" Round Culvert
			$\mathrm{L}=38.0$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 898.00' / 898.00' S=0.0000 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.20 sf
\#2	Device 1	901.50'	Conductivity to Groundwater Elevation = 800.00'
\#3	Secondary	902.00'	24.0" x 24.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads

Primary OutFlow Max=0.01 cfs @ 11.99 hrs HW=902.24' (Free Discharge)
$L_{1}=$ Culvert (Passes 0.01 cfs of 1.38 cfs potential flow)
L2=Exfiltration (Controls 0.01 cfs)
Secondary OutFlow Max=3.10 cfs @ 11.99 hrs HW=902.24' (Free Discharge)
$亡_{3=O r i f i c e / G r a t e ~(W e i r ~ C o n t r o l s ~} 3.10$ cfs @ 1.61 fps)

Pond 1DP: North Bioretention Basin

Summary for Pond 1EP: Conveyance Pipe

[79] Warning: Submerged Pond 1CP Primary device \# 1 INLET by 1.18'
[79] Warning: Submerged Pond 1DP Primary device \# 1 by 1.18'

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs $/ 2$
Peak Elev= 899.18' @ 11.99 hrs
Flood Elev= 902.50'

Device	Routing	Invert	Outlet Devices		
\#1	Primary	893.50'	18.0" Round Culvert		
			L= 109.0' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$		
			Inlet / Outlet Invert= 893.50' / 885.00' S=0.0780 '/' Cc= 0.900		
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf		
\#2	Device 1	896.81'	18.0" Round Culvert		
			$\mathrm{L}=196.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$		
			Inlet / Outlet Invert= 896.81' / 893.50' S=0.0169 '/' Cc= 0.900		
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf		
Primary OutFlow Max=8.55 cfs @ 11.99 hrs HW=899.18' (Free Discharge) _1 $_{1=C u l v e r t ~(P a s s e s ~} 8.55$ cfs of 14.92 cfs potential flow) -2=Culvert (Inlet Controls 8.55 cfs @ 4.84 fps)					

Pond 1EP: Conveyance Pipe

Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)
Inflow Area $=0.425 \mathrm{ac}, 0.00 \%$ Impervious, Inflow Depth $=2.65$ " for 100yr event
Inflow = 1.29 cfs @ 12.12 hrs, Volume=

Primary =
1.29 cfs @ 12.12 hrs, Volume= 0.094 af
0.094 af, Atten= 0\%, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Pond 2P: Discharge to South
Hydrograph

DATE: MAY 2021

PROJECT NAME: RURAL OUTREACH CENTER

Stormwater Quality Calculations

```
Impervious Areas (refer to Existing & Proposed Drainage Analysis Maps)
I
    Drainage Analysis Map
I Proposed := 1.21 }\quad\mp@subsup{|}{\mathrm{ Proposed }}{}=\mathrm{ Proposed Impervious Area (acres) per Proposed
        Drainage Analysis Map
I
I
```



```
I
```


Minimum Runoff Reduction Volume ($\mathbf{R R}_{\mathbf{v}} \mathbf{~ M i n)}$

The minimum RRv is calculated by applying a reduction factor (S) (based on the HSG on site) to the area of new impervious coverage.

$\mathrm{P}:=1.0$	90\% Rainfall Event (inches)
$\mathrm{Rv}:=0.95$	$0.05+0.009(1)$ where I is 100% impervious
Aic : $=0.78$	Total Area of new impervious area (acres)
S $:=0.20$	Hydrologic Soil Group (HSG) Specific Reduction Factor (S) The site is $\mathbf{1 0 0 \%}$ HSG D. Therefore, $\mathrm{S}=0.20$
$\mathrm{RR}_{\mathrm{vmin}}:=\frac{\mathrm{P} \cdot \mathrm{Rv} \cdot \mathrm{Aic} \cdot \mathrm{~S}}{12}=0.012$	Runoff Reduction Volume Minimum (acre-feet)
$\mathrm{RR}_{\mathrm{vmin}} \cdot 43560=538$	Runoff Reduction Volume Minimum (cubic-feet)

Water Quality Volume Required (WQ ${ }_{\mathrm{v}}$ Required)

New Impervious Area

$$
\begin{gathered}
\mathrm{P}=1.000 \\
\mathrm{~A}_{\mathrm{n}}:=0.78 \\
\mathrm{I}:=100 \\
\mathrm{R}_{\mathrm{V}}:=0.05+0.009 \cdot \mathrm{I} \\
\mathrm{R}_{\mathrm{V}}=0.950 \\
\mathrm{WQ}_{\mathrm{VNew}}:=\frac{\mathrm{P} \cdot \mathrm{R}_{\mathrm{v}} \cdot \mathrm{~A}_{\mathrm{n}}}{12} \\
\mathrm{WQ}_{\mathrm{VNew}}=0.062 \\
\mathrm{WQ}_{\mathrm{VNew}} \cdot 43560=2690
\end{gathered}
$$

Reconstructed Impervious Area

$$
\begin{gathered}
\mathrm{P}=1.000 \\
\mathrm{~A}_{\mathrm{r}}:=0.43 \\
\mathrm{I}:=100 \\
\mathrm{R}_{\mathrm{N}}:=0.05+0.009 \cdot \mathrm{I} \\
\mathrm{R}_{\mathrm{V}}=0.950 \\
\mathrm{WQ}_{\mathrm{VRecon}}:=\frac{\mathrm{P} \cdot \mathrm{R}_{\mathrm{v}} \cdot \mathrm{~A}_{\mathrm{r}}}{12} \\
\mathrm{WQ}_{\mathrm{VR} \text { Recon }}=0.034 \\
\mathrm{WQ}_{\mathrm{VRecon}} \cdot 43560=1483
\end{gathered}
$$

90\% Rainfall Event (inches)
Total Area of New Impervious area (acres)
Percent impervious cover (100\%)
$0.05+0.009(I)$ where I is 100% impervious

Water Quality Volume Required from New Impervious Areas (acre-feet)

Water Quality Volume Required from New Impervious Areas (cubic feet)

90\% Rainfall Event (inches)
Total Area of new impervious area (acres)
Percent impervious cover (100\%)
$0.05+0.009(I)$ where I is 100% impervious

Water Quality Volume Required from
Reconstructed Impervious Areas (acre-feet)
Water Quality Volume Required from Reconstructed Impervious Areas (cubic feet)

Total Water Quality Volume Required

In accordance with Chapters 4 and 9 of the NYSDEC SMDM, treat 100\% of the new impervious area and 25% of the reconstructed impervious area with a standard practice.

$$
\begin{array}{ll}
\mathrm{WQ}_{\mathrm{V} \text { Required }}:=\left(1.0 \cdot \mathrm{WQ}_{\mathrm{VNew}}+0.25 \cdot \mathrm{WQ}_{\mathrm{VRecon}}\right) \\
& \\
\mathrm{WQ}_{\mathrm{V} \text { Required }}=0.070 & \text { Total Water Quality Volume Required (acre-feet) } \\
\mathrm{WQ}_{\mathrm{VRequired}} \cdot 43560=3061 & \text { Total Water Quality Volume Required (cubic feet) }
\end{array}
$$

Water Quality Volume Provided (WQ Provided)

East Bioretention Basin

$$
\begin{aligned}
& \mathrm{P}=1.000 \quad 90 \% \text { Rainfall Event (inches) } \\
& \mathrm{A}_{1}:=0.58 \quad \text { Area draining to } \mathbf{B M P}=\text { Parking Lot }+ \text { small portion of } \\
& =26,070 \text { sf } 0.60 \text { acres } \\
& \mathrm{I}:=100 \quad \text { Percent impervious cover (100\%) } \\
& \underset{\text { Run }}{R}:=0.05+0.009 \cdot I \quad 0.05+\mathbf{0 . 0 0 9 (I)} \text { where } \mathrm{I} \text { is } \mathbf{1 0 0 \%} \text { impervious } \\
& \mathrm{R}_{\mathrm{V}}=0.950 \\
& \mathrm{WQ}_{\mathrm{V} 1}:=\frac{\mathrm{P} \cdot \mathrm{R}_{\mathrm{v}} \cdot \mathrm{~A}_{1}}{12} \\
& \mathrm{WQ}_{\mathrm{V} 1}=0.046 \quad \text { Water Quality Volume Provided in BMP (acre-feet) } \\
& \mathrm{WQ}_{\mathrm{V} 1} \cdot 43560=2000 \quad \text { Water Quality Volume Provided in BMP (cubic feet) } \\
& \text { For Bioretention Basins in Type 'D' soils, } 40 \% \text { of the water quality volume can count } \\
& \text { towards the Runoff Reduction Volume. } \\
& \mathrm{RR}_{\mathrm{v} 1}:=0.40 \cdot \mathrm{WQ}_{\mathrm{V} 1} \\
& R R_{\mathrm{V} 1}=0.018 \quad \text { Runoff Reduction Volume Provided in BMP (acre-feet) } \\
& \mathrm{RR}_{\mathrm{V} 1} \cdot 43560=800 \quad \text { Runoff Reduction Volume Provided in BMP (cubic-feet) } \\
& \mathrm{WQ}_{\mathrm{vProvided} 1}:=\mathrm{WQ}_{\mathrm{V} 1}-\mathrm{RR}_{\mathrm{V} 1} \\
& \mathrm{WQ}_{\mathrm{V} \text { Provided } 1}=0.028 \quad \text { Water Quality Volume Provided in BMP (acre-feet) } \\
& \mathrm{WQ}_{\text {vProvided } 1} \cdot 43560=1200 \quad \text { Water Quality Volume Provided in BMP (cubic-feet) }
\end{aligned}
$$

Size Filter Area of East Bioretention Basin

$$
\begin{array}{ll}
\mathrm{WQ}_{\mathrm{v} 1} \cdot 43560=2000 & \begin{array}{l}
\text { Water Quality Volume Provided in BMP (cubic feet) } \\
\mathrm{d}_{\mathrm{f}}:=2.5
\end{array} \\
\mathrm{k}:=0.50 & \begin{array}{l}
\text { Filter Bed Depth }=\mathbf{2 . 5} \text { feet } \\
\text { Coefficient of permeability of filter media = } \mathbf{0 . 5 0} \mathrm{ft} / \text { day }
\end{array} \\
\text { (for bioretention soil) }
\end{array}
$$

A_{f} provided is $\mathbf{1 , 7 2 2}$ square feet

North Bioretention Basin

$$
\begin{aligned}
& \mathrm{P}=1.000 \quad \mathbf{9 0 \%} \text { Rainfall Event (inches) } \\
& \mathrm{A}_{2}:=.356 \\
& \text { Area draining to BMP = New Bldg, Sdwlks+ Future Bldg } \\
& =15,523 \mathrm{sf}=0.356 \text { acres } \\
& \underset{\sim}{I}:=100 \quad \text { Percent impervious cover (100\%) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{V}}=0.950 \\
& \mathrm{WQ}_{\mathrm{v} 2}:=\frac{\mathrm{P} \cdot \mathrm{R}_{\mathrm{V}} \cdot \mathrm{~A}_{2}}{12} \\
& \mathrm{WQ}_{\mathrm{V} 2}=0.028 \quad \text { Water Quality Volume Provided in BMP (acre-feet) } \\
& \mathrm{WQ}_{\mathrm{V} 2} 243560=1228 \quad \text { Water Quality Volume Provided in BMP (cubic feet) } \\
& \text { For Bioretention Basins in Type 'D' soils, } 40 \% \text { of the water quality volume can count } \\
& \text { towards the Runoff Reduction Volume. } \\
& \mathrm{RR}_{\mathrm{v} 2}:=0.40 \cdot \mathrm{WQ}_{\mathrm{v} 2} \\
& \mathrm{RR}_{\mathrm{v} 2}=0.011 \quad \text { Runoff Reduction Volume Provided in BMP (acre-feet) } \\
& \mathrm{RR}_{\mathrm{V} 2} \cdot 43560=491 \quad \text { Runoff Reduction Volume Provided in BMP (cubic-feet) }
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{WQ}_{\mathrm{vProvided} 2}:=\mathrm{WQ}_{\mathrm{v} 2}-\mathrm{RR}_{\mathrm{v} 2} & \\
\mathrm{WQ}_{\mathrm{vProvided} 2}=0.017 & \text { Water Quality Volume Provided in BMP (acre-feet) } \\
\mathrm{WQ}_{\mathrm{vProvided} 2} \cdot 43560=737 & \text { Water Quality Volume Provided in BMP (cubic-feet) }
\end{array}
$$

Size Filter Area of North Bioretention Basin

$$
\begin{aligned}
& \mathrm{WQ}_{\mathrm{v} 2} \cdot 43560=1228 \\
& { }_{\mathrm{d}}^{\mathrm{m}} \mathrm{t} \\
& \text { k: }=0.50 \\
& h_{\text {mev }}:=0.50 \\
& \text { tan: }=2 \\
& A_{f 2}:=\frac{W Q_{v 2} \cdot 43560 \cdot d_{f}}{k \cdot\left(h_{f}+d_{f}\right) \cdot t_{f}} \\
& \mathrm{~A}_{\mathrm{f} 2}=1023 \quad \text { Required Surface Area of filter bed (square feet) }
\end{aligned}
$$

A_{f} provided is 1,080 square feet

MAP LEGEND			MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	\square	C C/D	The soil surveys that comprise your AOI were mapped at 1:15,800.
Soils	\square	D	Warning: Soil Map may not be valid at this scale.
	\square	Not rated or not available	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
A/D	Water F	ures	line placement. The maps do not show the small areas of
] B	\sim	Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
B/D	Transportation		
C			Please rely on the bar scale on each map sheet for map
C	\sim	Interstate Highways	measurements.
$\square \mathrm{C} / \mathrm{D}$	~	US Routes	Source of Map: Natural Resources Conservation Service
$\square \mathrm{D}$	\approx	Major Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
Not rated or not available	2	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Rating Lines	Background		projection, which preserves direction and shape but distorts
$\cdots \mathrm{A} / \mathrm{D}$	\square	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
- C			Soil Survey Area: Erie County, New York Survey Area Data: Version 20, Jun 11, 2020
- C/D			Soil map units are labeled (as space allows) for map scales
- D			1:50,000 or larger.
* Not rated or not available			Date(s) aerial images were photographed: Aug 6, 2018—Sep
Soil Rating Points			27, 2019 (
- A			The orthophoto or other base map on which the soil lines were
- A / D			imagery displayed on these maps. As a result, some minor
$\square \mathrm{B}$			shifting of map unit boundaries may be evident.
- B/D			

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
OrC	Orpark silt loam, 8 to 15 percent slopes	C/D	1.2	17.5%
RkB	Rhinebeck gravelly loam, 3 to 8 percent slopes	C/D	5.4	82.5%
Totals for Area of Interest		$\mathbf{6 . 6}$	$\mathbf{1 0 0 . 0 \%}$	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

APPENDIX C

SANITARY SEWER \& SEPTIC SYSTEM CALCULATIONS

DATE: April 1, 2021

PROJECT NAME: Rural Outreach Center

Sanitary Calculations

Loading Rates taken from NYSDEC Design Standards for Intermediate
Sized Wastewater Treatment Systems (2014) - Table B-3: Typical Per-Unit
Hydraulic Loading Rates

$$
\left.\begin{array}{c}
\text { Church/Multi-Purpose Space }=2.4 \mathrm{gpd} / \text { seat (} 3 \mathrm{gpd} / \text { seat reduced by } 20 \% \text { with using } \\
\quad \text { water saving reducing plumbing fixtures } \\
\text { Offices = } 12 \mathrm{gpd} / \text { employee (} 15 \mathrm{gpd} / \text { employee reduced by } 20 \% \text { with using water saving } \\
\text { reducing plumbing fixtures }
\end{array}\right\} \begin{gathered}
\text { Classroom = } 8 \mathrm{gpd} / \text { seat }(10 \mathrm{gpd} / \text { seat reduced by } 20 \% \text { with using water saving } \\
\text { reducing plumbing fixtures }
\end{gathered}
$$

$$
\begin{array}{ll}
\mathrm{LR}_{\text {office }}:=12 \cdot \frac{\text { gal }}{\text { day }} & \text { Hydraulic Loading Rate (gal/day per employee) } \\
\mathrm{LR}_{\text {class }}:=8 \cdot \frac{\text { gal }}{\text { day }} & \text { Hydraulic Loading Rate (gal/day per seat) } \\
\mathrm{LR}_{\text {Church }}:=2.4 \cdot \frac{\text { gal }}{\text { day }} & \text { Hydraulic Loading Rate (gal/day per seat) } \\
\mathrm{LR}_{\text {Banquet }}:=8 \cdot \frac{\mathrm{gal}}{\text { day }} & \text { Hydraulic Loading Rate (gal/day per seat) }
\end{array}
$$

Building Uses/Matrix

$\mathrm{N}_{\text {Offices }}:=22$	$\mathbf{1 4}$ full time staff $\mathbf{+} \mathbf{8}$ full time visitors
$\mathrm{N}_{\text {Class }}:=20$	$\mathbf{2}$ classrooms with $\mathbf{1 0}$ people per room
$\mathrm{N}_{\text {Church }}:=120$	Number of people attending church services
$\mathrm{N}_{\text {Banquet }}:=120$	Number of people attending banquet

Average Daily Design Flow

Scenario \# 1: Counseling Services include office and classroom used on a daily basis
Per Erie County Water Authority water records, the existing facility uses 9,000 gallons quarterly $=3,000$ gallons $/$ month $=100$ gpd

$$
\mathrm{Q}_{1}:=100 \cdot \frac{\mathrm{gal}}{\mathrm{day}}
$$

Scenario \#2: Church Service

$$
\begin{aligned}
& \mathrm{Q}_{2}:=\mathrm{N}_{\text {Church }} \cdot \mathrm{LR}_{\text {Church }} \\
& \mathrm{Q}_{2}=288 \cdot \frac{\text { gal }}{\text { day }}
\end{aligned}
$$

Scenario \#3: Banquet Event

$$
\begin{aligned}
& Q_{3}:=N_{\text {Banquet }} \cdot \mathrm{LR}_{\text {Banquet }} \\
& Q_{3}=960 \cdot \frac{\mathrm{gal}}{\text { day }}
\end{aligned}
$$

Scenario \#3 is the worst case scenario. Accordingly, use $\mathbf{9 6 0}$ gal/day for design.

$$
\mathrm{Q}:=960 \frac{\mathrm{gal}}{\mathrm{day}} \quad \text { Design flow (gal/day) }
$$

Sand Filter

Design Per "Residential Onsite Wastewater Treatment System Design Handbook," NYS Department of Health (2012)

$$
\begin{array}{ll}
\mathrm{Q}=960 \cdot \frac{\mathrm{gal}}{\mathrm{day}} & \text { Design Flow (gal/day) } \\
\mathrm{q}:=1.0 \frac{\frac{\mathrm{gal}}{\mathrm{day}}}{\mathrm{ft}^{2}} & \text { Application Rate (gal/day/s.f.) } \\
\mathrm{SA}:=\frac{\mathrm{Q}}{\mathrm{q}} & \mathrm{SA}=960 \cdot \mathrm{ft}^{2}
\end{array} \begin{aligned}
& \text { Surface Area required of sand filter (s.f) } \\
& \mathrm{w}_{\mathrm{db}}:=3 \mathrm{ft} \\
& \mathrm{~L}:=\frac{\mathrm{SA}}{\mathrm{w}_{\mathrm{db}}}
\end{aligned}
$$

Use $\mathrm{N}=8$

The distribution system shall be designed to dose the filter at least 2 times daily based upon the design flow rate. The volume of each dose shall be approximately 75% of the volume of the distribution lines when dosing is used.

$$
\begin{array}{ll}
\mathrm{N}_{\mathrm{d}}:=8 & \begin{array}{l}
\text { Number of Distribution Lines } \\
\mathrm{L}_{\mathrm{d}}:=40 \mathrm{ft}
\end{array} \\
\begin{array}{ll}
\text { Length of Distribution Lines (ft) }
\end{array} \\
\mathrm{d}_{\mathrm{d}}:=4 \mathrm{in} & \text { Diameter of Distribution Lines (in) } \\
\mathrm{A}_{\mathrm{d}}:=\frac{3.14}{4} \cdot\left[\frac{\mathrm{~d}_{\mathrm{d}}}{\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)}\right]^{2} & \mathrm{~A}_{\mathrm{d}}=0.087 \cdot \mathrm{ft}^{2}
\end{array} \begin{aligned}
& \text { Area of Distribution Lines (ft^2) } \\
& \mathrm{V}_{\mathrm{d}}:=\mathrm{N}_{\mathrm{d}} \cdot \mathrm{~A}_{\mathrm{d}} \cdot \mathrm{~L}_{\mathrm{d}} \\
& \mathrm{~V}_{\mathrm{dgal}}:=\mathrm{V}_{\mathrm{d}} \cdot \frac{7.48 \mathrm{gal}}{1 \mathrm{ft}} \mathrm{~V}_{\mathrm{d}}=27.91 \cdot \mathrm{ft}^{3} \\
& \mathrm{~V}_{\mathrm{dgal}}=208.8 \cdot \mathrm{gal}
\end{aligned}
$$

$$
\mathrm{N}_{\text {doses }}:=\frac{\mathrm{V}_{\text {daily }}}{\mathrm{V}_{\text {dose }}} \quad \mathrm{N}_{\text {doses }}=6.131 \quad \text { Number of doses per day (2 min) }
$$

The dosing requirement is met by the design flow.

Downstream Modified Shallow Trench

Design Per "Residential Onsite Wastewater Treatment System Design
Handbook," NYS Department of Health (2012)

$$
\begin{aligned}
& \mathrm{Q}=960.000 \cdot \frac{\mathrm{gal}}{\mathrm{day}} \quad \text { Design Flow (gal/day) } \\
& \mathrm{Q}_{\mathrm{d}}:=0.85 \cdot \mathrm{Q}=816 \cdot \frac{\mathrm{gal}}{\mathrm{day}} \quad \text { Downstream Design Flow (gal/day); } \\
& \mathrm{m}:=1.2 \frac{\frac{\mathrm{gal}}{\text { day }}}{\mathrm{ft}^{2}} \\
& \text { SA: }:=\frac{\mathrm{Q}_{\mathrm{d}}}{\mathrm{q}} \quad \mathrm{SA}=680 \cdot \mathrm{ft}^{2} \quad \text { Surface Area required of trenches (s.f) } \\
& \mathrm{w}_{\mathrm{at}}:=2 \mathrm{ft} \quad \text { Width of Absorption Trench }=2 \text { feet } \\
& \mathrm{L}:=\frac{\mathrm{SA}}{\mathrm{w}_{\mathrm{at}}} \quad \mathrm{~L}=340 \cdot \mathrm{ft} \quad \text { Total Length of Distribution Lines }(\mathrm{ft}) \\
& \mathrm{N}:=\frac{\mathrm{L}}{57} \quad \mathrm{~N}=6.0 \cdot \mathrm{ft} \quad \text { Number of Distribution Lines 2' wide, 57' long } \\
& \text { Use } \mathbf{N}=\mathbf{6}
\end{aligned}
$$

Septic Tank

Design Per "Residential Onsite Wastewater Treatment System Design Handbook," NYS Department of Health (2012)

$$
\begin{array}{lll}
\mathrm{Q}=960 \cdot \frac{\mathrm{gal}}{\mathrm{day}} & \text { Design Flow (gal/day) } \\
\mathrm{V}:=1.5 \cdot \mathrm{Q} & \\
\mathrm{~V}=1440.000 \cdot \frac{\mathrm{gal}}{\text { day }} & & \text { Tank Size (gal) }
\end{array}
$$

PUMP STATION

$$
\begin{array}{ll}
\mathrm{Q}_{\text {Design }}:=960 \frac{\mathrm{gal}}{\text { day }} & \text { Average Daily Design Flow (gal/day) } \\
\mathrm{Q}_{\text {Design.gpm }}:=\mathrm{Q}_{\text {Design }} \cdot \frac{1 \text { day }}{12 \mathrm{hr}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}} & \\
\mathrm{Q}_{\text {Design.gpm }}=1.33 \cdot \frac{\mathrm{gal}}{\mathrm{~min}} & \text { Average Daily Design Flow (gal/min) }
\end{array}
$$

Per Recommended Standards for Wastewater Facilities (Ten States Standards, 2014 Edition), Figure 1:

$$
\frac{Q \text { Peak Hourly }}{Q \text { Design Average }}=\frac{18+\mathrm{P}^{1 / 2}}{4+\mathrm{P}^{1 / 2}}=\text { Peak Factor }
$$

where $\mathrm{P}=$ population in thousands

$$
P:=\frac{120}{1000}=0.120
$$

$$
\text { PeakFactor }:=\frac{18+\mathrm{P}^{\frac{1}{2}}}{4+\mathrm{P}^{\frac{1}{2}}}=4.221
$$

$$
\text { PeakFactor }=4.221
$$

$$
\mathrm{Q}_{\text {PeakHourly }}:=\mathrm{Q}_{\text {Design.gpm }} \cdot \text { PeakFactor }
$$

$$
\mathrm{Q}_{\text {PeakHourly }}=5.63 \cdot \frac{\mathrm{gal}}{\mathrm{~min}} \quad \text { Peak Hourly Flow (gal/min) }
$$

Per Ten States Standards (2014 Edition), forcemain shall have a minimum velocity of $2 \mathrm{ft} / \mathrm{sec}$
Determine pumping rate to maintain $2 \mathrm{ft} / \mathrm{sec}$ velocity with using $11 / 2$ inch, SCH 80 PVC forcemain:

$$
\begin{array}{ll}
\mathrm{D}_{\mathrm{fm}}:=1.5 \mathrm{in} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}} & \\
\mathrm{D}_{\mathrm{fm}}=0.125 \cdot \mathrm{ft} & \text { Diameter of forcemain (feet) } \\
\mathrm{A}_{\mathrm{fm}}:=\frac{\pi \cdot \mathrm{D}_{\mathrm{fm}}^{2}}{4} & \\
\mathrm{~A}_{\mathrm{fm}}=0.012 \cdot \mathrm{ft}^{2} & \text { Area of forcemain (square feet) }
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{fm}}:=\frac{2 \mathrm{ft}}{\mathrm{sec}} & \text { Minimum Velocity in forcer } \\
\mathrm{Q}_{\mathrm{fm}}=\left(\mathrm{V}_{\mathrm{fm})} \mathrm{A}_{\mathrm{fm})}\right. & \\
\mathrm{Q}_{\mathrm{fm}}:=\mathrm{V}_{\mathrm{fm}} \cdot \mathrm{~A}_{\mathrm{fm}} & \text { Flow in forcemain (cfs) } \\
\mathrm{Q}_{\mathrm{fm}}=0.025 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{sec}} & \\
\mathrm{Q}_{\mathrm{fm} . \mathrm{gpm}}:=\mathrm{Q}_{\mathrm{fm}} \cdot \frac{7.48 \mathrm{gal}}{\mathrm{ft}^{3}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}} & \\
\mathrm{Q}_{\mathrm{fm} . \mathrm{gpm}}=11.015 \cdot \frac{\mathrm{gal}}{\mathrm{~min}} & \text { Flow in forcemain (gal/min) }
\end{array}
$$

The pumping rate is to be the larger of either the peak flowrate or the required flowrate to maintain the minimum velocity of $2 \mathrm{ft} / \mathrm{sec}$.

The required flowrate to maintain min. velocity of $2 \mathrm{ft} / \mathrm{sec}$ governs.
Therefore use a pumping rate of $11 \mathrm{gal} / \mathrm{min}$

Headloss Calcs

Inlet to pump station $=897.09$
Elevation of forcemain @ Distribution Box = 900.00
Using a 6-foot diameter lift station:

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{LS}}:=6 \mathrm{ft} \\
& \mathrm{~A}_{\mathrm{LS}}:=\frac{\pi \cdot \mathrm{D}_{\mathrm{LS}}^{2}}{4} \\
& \mathrm{~A}_{\mathrm{LS}}=28.27 \cdot \mathrm{ft}^{2} \quad \text { Area of Lift Station } \\
& \mathrm{V}_{\mathrm{LS}}:=\mathrm{A}_{\mathrm{LS}} \cdot \frac{7.48 \mathrm{gal}}{\mathrm{ft}^{2}} \\
& \mathrm{~V}_{\mathrm{LS}}=211.5 \cdot \mathrm{gal} \quad \text { Volume in Lift Station (gal/foot depth) } \\
& {\text { Dosing Volume Required }=\mathrm{V}_{\text {dose }}} \begin{array}{l}
\mathrm{V}_{\text {dose }}=156.6 \cdot \text { gal } \quad \text { Dosing Volume in gallons }
\end{array}
\end{aligned}
$$

Storage Required:

$$
\text { Storage }:=\frac{\mathrm{V}_{\text {dose }}}{\mathrm{V}_{\mathrm{LS}}}
$$

$$
\text { Storage }=0.740
$$

Storage Required in feet

Top of Pump Station $=903.50$
6 " Inlet Elevation = 900.09
Alarm = 899.16
2 Pumps "On" = 898.66
1 Pump "On" = 898.16
Pumps "Off" = 897.42
Bottom of Pump Station $=897.00$
Total Depth $=6.50$ feet

Static Lift = Elevation of forcemain @ Distribuition Box - Pumps "Off" Elevation
= 903.17-897.42

Static Lift $=5.75$ feet
Forcemain is 6 linear feet, and assume 10\% for minor losses:
Effective Length $=6+(0.10) 6=6.6=7$ feet

Calculate Friction Losses in Forcemain for multiple flowrates to develop system curve:

$$
h_{L}=\frac{10.44(\mathrm{~L})\left(\mathrm{Q}^{1.85}\right)}{\mathrm{C}^{1.85} \mathrm{~d}^{4.87}}
$$

Where:
$h_{L}=$ headloss in feet
$L=$ forcemain length $=7$ feet
$Q=$ flow in gpm
$C=$ coefficient of friction for PVC pipe $=120$
$d=$ forcemain diameter (in inches) $=1.5$ inches
for $Q=5 \mathrm{gpm}:$

$$
\begin{aligned}
& \mathrm{Q}_{5 \mathrm{gpm}}:=5 \quad \mathrm{C}:=120 \quad \mathrm{~d}:=1.5 \quad \mathrm{~L}:=7 \\
& \mathrm{~h}_{\mathrm{L} 1}:= \frac{10.44 \cdot 7 \cdot \mathrm{Q}_{5 \mathrm{gpm}} 1.85}{\mathrm{C}^{1.85} \cdot \mathrm{~d}} 4.87 \\
& \mathrm{~h}_{\mathrm{L} 1}=0.028 \mathrm{ft}
\end{aligned}
$$

for $\mathrm{Q}=10 \mathrm{gpm}$:

$$
\begin{aligned}
& \mathrm{Q}_{10 \mathrm{gpm}}:=10 \quad \mathrm{C}:=120 \\
& \mathrm{~h}_{\mathrm{L} 2}:=\frac{10.44 \cdot 7 \cdot \mathrm{Q}_{10 \mathrm{gpm}} 1.85}{\mathrm{C}^{1.85} \cdot \mathrm{~d}^{4.87}} \\
& \mathrm{~h}_{\mathrm{L} 2}=0.102 \mathrm{ft}
\end{aligned}
$$

for $\mathrm{Q}=11 \mathrm{gpm}$:

$$
\begin{aligned}
& \mathrm{Q}_{11 \mathrm{gpm}}:=11 \quad \mathrm{C}:=120 \\
& \mathrm{~h}_{\mathrm{L} 3}:=\frac{10.44 \cdot 7 \cdot \mathrm{Q}_{11 \mathrm{gpm}}^{1.85}}{\mathrm{C}^{1.85} \cdot \mathrm{~d}^{4.87}} \\
& \mathrm{~h}_{\mathrm{L} 3}=0.122 \mathrm{ft}
\end{aligned}
$$

for $\mathrm{Q}=15 \mathrm{gpm}$:

$$
\begin{aligned}
& \mathrm{Q}_{15 \mathrm{gpm}}:=15 \quad \mathrm{C}:=120 \quad \text { d }:=1.5 \quad \mathrm{~L}:=7 \\
& \mathrm{~h}_{\mathrm{L} 4}:=\frac{10.44 \cdot 7 \cdot \mathrm{Q}_{15 \mathrm{gpm}}^{1.85}}{\mathrm{C}^{1.85} \cdot \mathrm{~d}^{4.87}} \\
& \mathrm{~h}_{\mathrm{L} 4}=0.217 \mathrm{ft}
\end{aligned}
$$

for $\mathrm{Q}=20 \mathrm{gpm}$:

$$
\begin{aligned}
& \mathrm{Q}_{20 \mathrm{gpm}}:=20 \quad \mathrm{C}:=120 \quad \underset{\mathrm{~m}}{\mathrm{~m}}:=1.5 \quad \mathrm{~L}:=7 \\
& \mathrm{~h}_{\mathrm{L} 5}:=\frac{10.44 \cdot 7 \cdot \mathrm{Q}_{20 \mathrm{gpm}}^{1.85}}{\mathrm{C}^{1.85} \cdot \mathrm{~d}^{4.87}} \\
& \mathrm{~h}_{\mathrm{L} 5}=0.369 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \mathrm{Q}=25 \mathrm{gpm}: \\
& \mathrm{Q}_{25 \mathrm{gpm}}:=25 \quad \mathrm{C}:=120 \quad \mathrm{~d}:=1.5 \quad \mathrm{~L}:=7 \\
& \mathrm{~h}_{\mathrm{L} 6}:=\frac{10.44 \cdot 7 \cdot \mathrm{Q}_{25 \mathrm{gpm}}^{1.85}}{\mathrm{C}^{1.85} \cdot \mathrm{~d}^{4.87}} \\
& \mathrm{~h}_{\mathrm{L} 6}=0.557 \mathrm{ft}
\end{aligned}
$$

Flowrate		Velocity in forcemain	$\mathbf{h}_{\mathbf{L}}$ in pipe	Static Lift	TDH
$\mathbf{g p m}$	cfs	ft/sec	feet	feet	($\mathbf{h}_{\mathbf{L}}$ in pipe + Static Lift) in feet
0	0	0.00	0	5.75	5.75
5	0.011	0.93	0.028	5.75	5.78
10	0.022	1.86	0.102	5.75	5.85
11	0.025	2.04	0.122	5.75	5.87
15	0.033	2.79	0.217	5.75	5.97
20	0.045	3.71	0.369	5.75	6.12
25	0.056	4.64	0.557	5.75	6.31

I
Choose a pump capable of $11 \mathrm{gpm} @ 5.87$ feet TDH
Use (2) Liberty Pumps Model FL-30-Series, 1/3 HP submersible effluent pumps with 1 1/2" discharge.

Pump will operate at around 52 gpm

A Family and Employee Owned Company

Pump Specification

FL30-Series

1/3 HP Submersible Effluent Pumps

LITERS PER MINUTE

FL30-Series Dimensional Data

FL30-Series Electrical Data

MODEL	HP	VOLTAGE	PHASE	FULL LOAD AMPS	LOCKED ROTOR AMPS	THERMAL OVERLOAD TEMP	STATOR WINDING CLASS	CORD LENGTH	PUMP DISCHARGE	AUTOMATIC
FL31A	1/3	115	1	10.5	26	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	10'	1-1/2" NPT	YES
FL31A-2	1/3	115	1	10.5	26	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	25^{\prime}	1-1/2" NPT	YES
FL31A-3	1/3	115	1	10.5	26	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	35^{\prime}	1-1/2" NPT	YES
FL31M	1/3	115	1	10.5	26	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	10^{\prime}	1-1/2" NPT	NO
FL31M-2	1/3	115	1	10.5	26	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	25^{\prime}	1-1/2" NPT	NO
FL31M-3	1/3	115	1	10.5	26	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	35'	1-1/2" NPT	NO
FL31M-5	1/3	115	1	10.5	26	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	50^{\prime}	1-1/2" NPT	NO
FL32A	1/3	208-230	1	5.5	12	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	10^{\prime}	1-1/2" NPT	YES
FL32A-2	1/3	208-230	1	5.5	12	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	25^{\prime}	1-1/2" NPT	YES
FL32A-3	1/3	208-230	1	5.5	12	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	35^{\prime}	1-1/2" NPT	YES
FL32M	1/3	208-230	1	5.5	12	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	10^{\prime}	1-1/2" NPT	NO
FL32M-2	1/3	208-230	1	5.5	12	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	25^{\prime}	1-1/2" NPT	NO
FL32M-3	1/3	208-230	1	5.5	12	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	35^{\prime}	1-1/2" NPT	NO
FL32M-5	1/3	208-230	1	5.5	12	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$	B	50^{\prime}	1-1/2" NPT	NO

FL30-Series Technical Data

IMPELLER	MULTI-VANE ENGINEERED POLYMER
PAINT	POWDER COATING
MAX LIQUID TEMP	$60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$
MAX STATOR TEMP (1-PHASE)	$130^{\circ} \mathrm{C} / 250^{\circ} \mathrm{F}$
THERMAL OVERLOAD	$105^{\circ} \mathrm{C} / 221^{\circ} \mathrm{F}$
POWER CORD TYPE	SJTW
MOTOR HOUSING	CLASS 25 CAST IRON
VOLUTE	STASS 25 CAST IRON
SHAFT	STAINLESS
HARDWARE	BUNA-N
O-RINGS	UNITIZED CERAMIC CARBON
MECHANICAL SEAL	37 LBS / 16.8 KG
WEIGHT	

FL30-Series Specifications

The contractor shall provide labor, material, equipment, and incidentals required to provide \qquad (QTY) centrifugal pumps as specified herein. The pump models covered in this specification are FL30-Series single-phase pumps. The pump furnished for this application shall be model \qquad as manufactured by Liberty Pumps.

2.01 OPERATING CONDITIONS

Each submersible pump shall be rated at $1 / 3 \mathrm{hp}$, \qquad volts, single-phase, $60 \mathrm{~Hz}, 1725$ RPM. The unit shall produce
\qquad GPM at \qquad feet of total dynamic head.
The submersible pump shall be capable of handling effluent with $3 / 4^{\prime \prime}$ solids handling capability. The submersible pump shall have a shut-off head of 19.8 feet and a maximum flow of 58 GPM @ 5 feet of total dynamic head.
The pump shall be controlled with:

__ Piggyback style ON/OFF float switch

\qquad NEMA 4X outdoor simplex control panel with three float switches and a high water alarm
NEMA 1 indoor simplex control panel with three float switches and a high water alarm
NEMA 4X outdoor simplex control panel with four float switches and a high water alarm
NEMA 1 indoor simplex control panel with four float switches and a high water alarm NEMA 4X outdoor duplex control panel with three float switches and a high water alarm NEMA 1 indoor duplex control panel with three float switches and a high water alarm NEMA 4X outdoor duplex control panel with four float switches and a high water alarm NEMA 1 indoor duplex control panel with four float switches and a high water alarm

3.01 CONSTRUCTION

Each centrifugal effluent pump shall be equal to the ${ }_{c}$ certified FL30-Series pumps as manufactured by Liberty Pumps, Bergen NY. The castings shall be constructed of class 25 cast iron. The motor housing shall be oil filled to dissipate heat. Air filled motors shall not be considered equal since they do not properly dissipate heat from the motor. All mating parts shall be machined and sealed with a Buna-N O-ring. All fasteners exposed to the liquid shall be stainless steel. The motor shall be protected on the top side with sealed cord entry plate with molded pins to conduct electricity, eliminating the ability of water to enter internally through the cord. The motor shall be protected on the lower side with a unitized ceramic/carbon seal with stainless steel housings and spring. The pump shall be furnished with stainless steel handle.

4.01 ELECTRICAL POWER CORD

The submersible pump shall be supplied with $10,25,35$, or 50 feet of multiconductor power cord. It shall be cord type SJTW, capable of continued exposure to the pumped liquid. The power cord shall be sized for the rated full load amps of the pump in accordance with the National Electric Code. The power cable shall not enter the motor housing directly but will conduct electricity to the motor by means of a watertight compression fitting cord plate assembly, with molded pins to conduct electricity. This will eliminate the ability of water to enter internally through the cord by means of a damaged or wicking cord.

5.01 MOTORS

Single-phase motors shall be oil filled, permanent split capacitor, class B insulated NEMA B design, rated for continuous duty. Since air filled motors are not capable of dissipating heat as effectively, they shall not be considered equal. At maximum load, the winding temperature shall not exceed $130^{\circ} \mathrm{C}$ unsubmerged. The pump motor shall have an integral thermal overload switch in the windings for protecting the motor. The capacitor circuit shall be mounted internally in the pump.

6.01 BEARINGS AND SHAFT

Upper and lower ball bearings shall be required. The bearings shall be a single ball/race type bearing. Both bearings shall be permanently lubricated by the oil that fills the motor housing. The motor shaft shall be made of 300 or 400 series stainless steel and have a minimum diameter of 0.500 ".

7.01 SEALS

The pump shall have a unitized carbon/ceramic seal with stainless steel housings and spring equal to Crane Type 6a. The motor plate/ housing interface shall be sealed with a Buna-N O-ring.

8.01 IMPELLER

The impeller shall be engineered polymer, with pump out vanes on the back shroud to keep debris away from the seal area. It shall be threaded to the motor shaft.

9.01 CONTROLS

All units can be supplied with CSA and UL approved automatic wide angle tilt float switches. The switches shall be equipped with piggyback style plug that allows the pump to be operated manually without the removal of the pump in the event that a switch becomes inoperable. Manual pumps are operable by means of a pump control panel.

10.01 PAINT

The exterior of the casting shall be protected with powder coat paint.

11.01 SUPPORT

The pump shall have cast iron support legs, enabling it to be a freestanding unit. The legs will be high enough to allow $3 / 4^{\prime \prime}$ solids to enter the volute.

12.01 SERVICEABILITY

Components required for the repair of the pump shall be shipped within a period of 24 hours.
\qquad Factory mounted guide rail system with pump suspended by means of bolt-on quick disconnect that is sealed by means of nitrile grommets or O-rings. The discharge piping shall be schedule 80 PVC and furnished with a PVC check valve and shut-off ball valve. The tank shall be wound fiberglass or roto-molded plastic. An inlet hub shall be provided with the fiberglass systems.
\qquad Stainless steel guide rail
\qquad Zinc plated steel guide rail
" diameter of basin
\qquad " height of basin
" distance from top of tank to discharge pipe outlet
Fiberglass cover
Structural foam polymer cover
Steel cover
Simplex system with outdoor panel and alarm
Duplex system with outdoor panel and alarm
Separate outdoor alarm
Remote outdoor alarm

14.01 TESTING

The pump shall have a ground continuity check and the motor chamber shall be hi-potted to test for electrical integrity, moisture content, and insulation defects. The motor and volute housing shall be pressurized, and an air leak decay test performed to ensure integrity of the motor housing. The pump shall be run, voltage current monitored, and checked for noise or other malfunction.

15.01 QUALITY CONTROL

The pump shall be manufactured in an ISO 9001 certified facility.

16.01 WARRANTY

Standard limited warranty shall be 3 years.

Development Site: RURAL OUTREACH CenTer (T/V/C): (T) AURORA County: ERIE Date: $\quad 12 / 4 / 20$

Tests Conducted By:

Weather Conditions: overcAst, $41^{\circ} \mathrm{F}$

Begin time, end time, and result in minutes for a water elevation change from 6 " to 5 " above the bottom of the test hole.

INSTRUCTIONS

Procedure:

1) At least two percolation tests shall be performed within the proposed absorption area. At least one percolation test should also be performed within the proposed absorption system expansion area.
(2) Dig each hole with vertical sides approximately 12 inches in diameter. If an absorption field is being considered, the depth of test holes should be 24 to 30 inches below final grade or at the projected bottom of trenches in shallower/deeper systems based upon test hole evaluation. The sides of the percolation holes should be scraped to avoid smearing. Place washed aggregate in the lower two inches of each test hole to reduce scouring and silting action when water is poured into the hole.
(3) Presoak the test holes by periodically filling the hole with water and allowing the water to seep away. This procedure should be performed for at least four hours and should begin one day before the test (except in clean coarse sand and gravel). After the water from the final presoaking has seeped away, remove any soil that has fallen from the sides of the hole.
(4) Pour clean water into the hole, with as little splashing as possible, to a depth of six inches above the bottom of the test hole.
(5) Observe and record the time in minutes required for the water to drop from the six-inch depth to the five-inch depth.
(6) Repeat steps (4) and (5) a minimum of three times until the time for the water to drop from six inches to five inches for two successive tests is approximately equal (i.e., $\leq 1 \mathrm{~min}$. for $1-30 \mathrm{~min}$. $/ \mathrm{inch}, \leq 2 \mathrm{~min}$. for $31-60 \mathrm{~min}$./inch). The longest time interval to drop one inch will be taken as the stabilized rate of percolation.
(7) Percolation test results shall be consistent with soil classification and if different results are obtained for multiple holes in a proposed absorption area, the slowest stabilized rate shall be used for system design.

I JASON UTZIG the undersigned certify that the percolation tests were conducted by me or under my direction in accord with the above procedure. The data and results are true and correct.

Date:

Signature:

License No. (P.E., R.A., L.S.)

Septic system/Deep Hole	File \#
Prepared by JU Date $12 / 4 / 20$ Checked by	

Deep HOLE \#1 (ELEV. 898.20)
\Rightarrow No mineral Deposits observes

Deep roLe \# 2 (ELev 899.30)
\Rightarrow rio miners Deposits obseaves

APPENDIX D

WATER CALCULATIONS

WATER H_{L} CALCULATIONS FOR RURAL OUTREACH CENTER

Water Demand

Domestic Service

Assume 120\% of the sewer design flow
Domestic water demand approximately equal to peak sewer flow $=5.63 \mathrm{gpm}$
However, per plumbing engineer, the peak domestic flow based upon fixture units is 80 gpm .
Accordingly, use a peak domestic flow of 80 gpm

$$
\mathrm{Q}_{\text {DomesticPeak }}:=80 \mathrm{gpm}
$$

Hydrant Flow Test information from the Erie County Water Authority dated 11/10/2009.

> Static Pressure $=64 \mathrm{psi}$
> Residual Pressure $=56$ psi with total flow of $1,138 \mathrm{gpm}$

$$
\begin{aligned}
& \text { Pressure }_{\text {static }}:=64 \quad \mathrm{psi} \\
& \text { Pressure }_{\text {residual }}:=56 \quad \mathrm{psi}
\end{aligned}
$$

Determine headloss in proposed domestic service:
Length of 3 inch PE domestic service from tap location to the building $=320 \mathrm{ft}$

$$
\begin{gathered}
\mathrm{L}_{\mathrm{D}}:=320 \quad \text { feet } \\
\mathrm{D}_{\mathrm{D}}:=3 \text { inches } \\
\mathrm{C}_{\mathrm{D}}:=140 \\
\mathrm{~h}_{\mathrm{L}}:=\frac{10.44 \cdot \mathrm{~L}_{\mathrm{D}} \cdot \mathrm{Q}_{\text {DomesticPeak }}^{1.85}}{\mathrm{C}_{\mathrm{D}}^{1.85} \cdot \mathrm{D}_{\mathrm{D}}{ }^{4.87}} \\
\mathrm{~h}_{\mathrm{L}}=5.632 \text { feet } \\
\mathrm{h}_{\mathrm{Lpsi}}:=0.433 \cdot \mathrm{~h}_{\mathrm{L}} \\
\mathrm{~h}_{\mathrm{Lpsi}}=2.4 \quad \mathrm{psi}
\end{gathered}
$$

Determine headloss due to fittings:

$$
\mathrm{h}_{\text {Lfittings }}:=1 \mathrm{psi}
$$

Determine headloss due to elevation:
Elevation Charge $=905.00-886.00=19$ feet
$\mathrm{h}_{\text {lelevation.ft }}:=19$ feet
$\mathrm{h}_{\text {lelevation }}:=0.433 \cdot \mathrm{~h}_{\text {lelevation.ft }}$
$\mathrm{h}_{\text {lelevation }}=8.2 \mathrm{psi}$

Determine headloss through 2 1/2-inch Watts LF957 RPZ:

- refer to attached cut sheet w/ 80 gpm domestic flow
$\mathrm{h}_{\text {LRPZ }}:=10 \mathrm{psi}$
Determine headloss through 2-inch Neptune T-10 meter:
- refer to attached cut sheet w/ 80 gpm domestic flow
$\mathrm{h}_{\text {LMeter }}:=2.5 \mathrm{psi}$
Calculate Residual Pressure at building:
Residual Pressure $=$ Residual in watermain - Sum of headloss
Pressure $_{\text {residualbldg }}:=$ Pressure $_{\text {residual }}-\left(\mathrm{h}_{\text {Lpsi }}+\mathrm{h}_{\text {Lfittings }}+\mathrm{h}_{\text {lelevation }}+\mathrm{h}_{\text {LRPZ }}+\mathrm{h}_{\text {LMeter }}\right)$
Pressure $_{\text {residualbldg }}=31.8 \quad \mathrm{psi}$

A-inch PE domestic water service lateral has capacity for the proposed domestic water demand with a residual pressure of 31.8 psi at the building.

Residual Pressure at Building with Required Fire Flow

Required Fire Flow $=500 \mathrm{gpm}$ (preliminary per fire protection engineer)

$$
Q_{\text {fireflow }}:=500 \quad \text { gpm }
$$

Determine headloss in proposed fire protection service:
Length of 6-inch PVC fire protection service from tap location to the building $=365 \mathrm{ft}$

$$
\begin{gathered}
\mathrm{L}_{\mathrm{F}}:=320 \quad \text { feet } \\
\mathrm{D}_{\mathrm{F}}:=6 \quad \text { inches } \\
\mathrm{C}_{\mathrm{F}}:=140 \\
\mathrm{~h}_{\mathrm{M}}:=\frac{10.44 \cdot \mathrm{~L}_{\mathrm{F}} \cdot \mathrm{Q}_{\text {fireflow }}{ }^{1.85}}{\mathrm{C}_{\mathrm{F}}^{1.85} \cdot \mathrm{D}_{\mathrm{F}}^{4.87}}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{L}}=5.715 \text { feet } \\
& \mathrm{h}_{\mathrm{Mpsia}}:=0.433 \cdot \mathrm{~h}_{\mathrm{L}} \\
& \mathrm{~h}_{\mathrm{Lpsi}}=2.5 \quad \mathrm{psi}
\end{aligned}
$$

Determine headloss due to fittings:

$$
\mathrm{h}_{\text {Mafittingov }}:=1 \mathrm{psi}
$$

Determine headloss due to elevation:
Elevation Charge $=905.00-886.00=19$ feet
$\mathrm{h}_{\text {mplownationaftit }}:=19$ feet
$\mathrm{h}_{\text {delemations }}:=0.433 \cdot \mathrm{~h}_{\text {lelevation. }} \mathrm{ft}$
$\mathrm{h}_{\text {lelevation }}=8.2 \mathrm{psi}$
Determine headloss through 4-inch Watts LF757 DCDA:

- refer to attached cut sheet w/ 500 gpm fire flow
$\mathrm{h}_{\text {LDCDA }}:=8 \quad \mathrm{psi}$

Calculate residual pressure at building using required fire flow:
Residual Pressure = Residual at watermain - Sum of headloss
Pressure $_{\text {Massidwalbldging }}:=$ Pressure $_{\text {residual }}-\left(\mathrm{h}_{\mathrm{Lpsi}}+\mathrm{h}_{\text {Lfittings }}+\mathrm{h}_{\text {lelevation }}+\mathrm{h}_{\text {LDCDA }}\right)$
Pressure $_{\text {residualbldg }}=36.3 \quad \mathrm{psi}$
At the building, a $\mathbf{5 0 0} \mathbf{g p m}$ fire flow can be provided within a 6 -inch PVC fire protection service with 36.3 psi residual pressure.

A PRODUCT SHEET OF NEPTUNE TECHNOLOGY GROUP

T-10® METER
 SIZES: 1 ½" and 2"

Construction

Every Neptune ${ }^{\oplus}$ T- 10^{\oplus} water meter meets or exceeds the latest AWWA C700 Standard. Its nutating disc, positive displacement principle has been time-proven for accuracy and dependability since 1892 , ensuring maximum utility revenue.

The T-10 water meter consists of three major assemblies: a register, a lead free, high-copper alloy maincase, and a nutating disc measuring chamber.

The T-10 meter is available with a variety of register types. For reading convenience, the register can be mounted in one of four positions on the meter.

The corrosion-resistant, lead-free, high-copper alloy maincase will withstand most service conditions: internal water pressure, rough handling, and in-line piping stress.

The innovative floating chamber design of the nutating disc measuring element protects the chamber from frost damage while the unique chamber seal extends the low-flow accuracy by sealing the chamber outlet port to the maincase outlet port. The nutating disc measuring element utilizes corrosion-resistant materials throughout and a thrust roller to minimize wear.

Warranty

Neptune provides a limited warranty for performance, materials and workmanship. See warranty statement for details.

KEY FEATURES

Register

- Magnetic-driven, low-torque registration ensures accuracy
- Impact-resistant register
- High-resolution, low-flow leak detection
- Bayonet-style register mount allows in-line serviceability
- Tamperproof seal pin deters theft
- Date of manufacture, size, and model stamped on dial face
Lead Free Maincase
- Made from lead free, high-copper alloy
- NSF/ANSI 61 Certified
- NSF/ANSI 372 Certified
- Lifetime guarantee
- Resists internal pressure stresses and external damage
- Handles in-line piping variations and stresses
- Lead free, high-copper alloy provides residual value vs. plastic
- Electrical grounding continuity

Nutating Disc Measuring Chamber

- Positive displacement
- Widest effective flow range for maximum revenue
- Proprietary polymer materials maximize long-term accuracy
- Floating chamber design is unaffected by meter position or in-line piping stresses

These charts show typical meter performance. Individual results may vary.

Operating Characteristics

Meter Size	Normal Operating Range @100\% Accuracy ($\pm 1.5 \%)$	AWWA Standard	Low Flow @ 95\% Accuracy
$11 / 2^{\prime \prime}$	2 to 100 US gpm	5 to 100 US gpm	$3 / 4 \mathrm{US} \mathrm{gpm}$
	0.46 to $22.73 \mathrm{~m}^{3} / \mathrm{h}$	1.1 to $22.7 \mathrm{~m}^{3} / \mathrm{h}$	$0.17 \mathrm{~m}^{3} / \mathrm{h}$

Dimensions

Meter Size	$\begin{gathered} \mathrm{A} \\ \mathrm{in} / \mathrm{mm} \end{gathered}$	$\begin{gathered} B \\ \mathrm{in} / \mathrm{mm} \end{gathered}$	C-Std. in/mm	C-ARB in/mm	c- E-CODER ${ }^{\text {® }}$) R900i'" or ProCoder") R900i' ${ }^{\text {m }}$	Threads per inch	DThread Type	$\begin{gathered} \mathrm{E} \\ \mathrm{in} / \mathrm{mm} \end{gathered}$	Weight lbs/kg
$1 \frac{1}{2} 2^{\prime \prime}$ Screw End	$\begin{aligned} & 125 / 8 \\ & 321 \end{aligned}$	$\begin{aligned} & 81 / 16 \\ & 205 \end{aligned}$	$\begin{aligned} & 81 / 8 \\ & 206 \end{aligned}$	$\begin{aligned} & 8^{13 / 16} \\ & 220.3 \end{aligned}$	$\begin{aligned} & 83 / 8 \\ & 213 \end{aligned}$	$11^{1 / 2}$	$\begin{aligned} & 1^{1 / 2} \\ & \text { NPT } \end{aligned}$	$\begin{gathered} 2^{9 / 16} \\ 65 \end{gathered}$	$\begin{gathered} 31 \\ 14.1 \end{gathered}$
$\begin{gathered} 11 / 2^{\prime \prime} \\ \text { Flanged End } \end{gathered}$	$\begin{gathered} 13 \\ 330 \end{gathered}$	$\begin{aligned} & 81 / 16 \\ & 205 \end{aligned}$	$\begin{aligned} & 81 / 8 \\ & 206 \end{aligned}$	$\begin{aligned} & 8^{13 / 1 / 16} \\ & 220.3 \end{aligned}$	$\begin{aligned} & 8^{3 / 8} \\ & 213 \end{aligned}$	-	-	$\begin{gathered} 29 / 16 \\ 65 \end{gathered}$	$\begin{gathered} \hline 35 \\ 15.9 \end{gathered}$
2" Screw End	$\begin{gathered} 151 / 4 \\ 387 \end{gathered}$	$\begin{aligned} & 97 / 16 \\ & 240 \end{aligned}$	$\begin{aligned} & 95 / 16 \\ & 237 \end{aligned}$	$\begin{aligned} & \hline 915 / 16 \\ & 248.4 \end{aligned}$	$\begin{aligned} & 91 / 2 \\ & 241 \end{aligned}$	$11^{1 / 2}$	$\begin{gathered} \hline 2^{\prime \prime} \\ \text { NPT } \end{gathered}$	$\begin{gathered} 3^{1 / 8} \\ 79 \end{gathered}$	$\begin{gathered} 40 \\ 18.1 \end{gathered}$
2" Flanged End	$\begin{gathered} 17 \\ 432 \end{gathered}$	$\begin{aligned} & 97 / 16 \\ & 240 \end{aligned}$	$\begin{aligned} & 95 / 16 \\ & 237 \end{aligned}$	$\begin{aligned} & 9 \text { 15/16 } \\ & 248.4 \end{aligned}$	$\begin{aligned} & 91 / 2 \\ & 271 \end{aligned}$	-	-	$\begin{gathered} 31 / 8 \\ 79 \end{gathered}$	$\begin{gathered} \hline 44 \\ 20.0 \end{gathered}$

T-10 With Standard Register

T-10 With E-CODER $\left.{ }^{\circledR}\right)$ R900im or ProCoder ${ }^{m}$)R900i" Pit Register

Guaranteed Systems

Compatibility
All T-10 meters are guaranteed adaptable to our $\mathrm{ARB}^{\circ} \mathrm{V}$, ProRead ${ }^{\text {m" }}$ (ARB VI), ProCoder ${ }^{\text {m" }}$,
E-CODER ${ }^{\oplus}$ (ARB VII),
E-CODER ${ }^{\oplus}$)R900 $i^{\prime \prime \prime}$, E-CODER ${ }^{\ominus}$)R450 $i^{\text {i" }}$, ProCoder ${ }^{\prime \prime \prime}$)R900i"', TRICON ${ }^{\oplus} / \mathrm{S}$, TRICON/E ${ }^{\oplus}$, and Neptune ARB ${ }^{\oplus}$ Utility Systems ${ }^{\text {m" }}$ without removing the meter from service.

Registration

ProRead Registration (per sweep hand revolution)		$11 / 2^{\prime \prime}$	2"
100	US Gallons	\checkmark	\checkmark
100	Imperial Gallons	\checkmark	\checkmark
10	Cubic Feet	\checkmark	\checkmark
1	Cubic Metre		\checkmark
. 01	Cubic Metre	\checkmark	
Register Capacity ProRead, ProCoder, and E-CODER		$11 / 2^{\prime \prime}$	2"
100,000,000	US Gallons	\checkmark	\checkmark
100,000,000	Imperial Gallons	\checkmark	\checkmark
10,000,000	Cubic Feet	\checkmark	\checkmark
100,000	Cubic Metres	\checkmark^{*}	
1,000,000	Cubic Metres	$\checkmark^{* *}$	\checkmark
E-CODER High Resolution (8-digit reading)		$11 / 2^{\prime \prime}$	2"
1	US Gallons	\checkmark	\checkmark
1	Imperial Gallons	\checkmark	\checkmark
0.1	Cubic Feet	\checkmark	\checkmark
0.01	Cubic Metres		\checkmark
0.001	Cubic Metres	\checkmark	
ProCoder High Resolution (8-digit reading)		$11 / 2^{\prime \prime}$	2"
1	US Gallons	\checkmark	\checkmark
1	Imperial Gallons	\checkmark	\checkmark
0.1	Cubic Feet	\checkmark	\checkmark
0.01	Cubic Metres	\checkmark	\checkmark

*ProRead and E-CODER only **ProCoder only

Options

Sizes

- $1 \frac{1}{2}$ " flanged or threaded end
- 2 " flanged or threaded end

Units of Measure

- U.S. gallons, imperial gallons, cubic feet, cubic metres

Register Types

- Direct reading: Bronze box and cover
- Remote reading: ProRead Absolute Encoder, ProCoder, E-CODER, E-CODER)R900i, E-CODER)R450i, ProCoder ${ }^{\text {"' }}$)R900 $i^{\text {m" }}$, TRICON/S, TRICON/E3
- Reclaim

Measuring Chamber

- Synthetic polymer

Companion Flanges

- Lead free, high-copper alloy

Environmental Conditions

- Operating temperature: $+33^{\circ} \mathrm{F}$ to $+149{ }^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$
- Storage temperature:
$-+33^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Test Ports
- 1" (optional)

\#winyourday

neptunetg.com

Job Name

Rural Outreach Center

 730 Olean RoadC\&S Engineers, Inc.
Engineer
Approval \qquad

LEAD FREE*

Series 957, 957N, $957 Z$

 Reduced Pressure Zone AssembliesSizes: $\mathbf{2}^{1 ⁄ 21 "}-10^{\prime \prime}$
Series 957, 957N, 957 Z Reduced Pressure Zone Assemblies provide protection to the potable water system from contamination in accordance with national plumbing codes. Series 957, 957N, 957 Z are normally used in health hazard applications for protection against backsiphonage or backpressure.
Series 957 is also available with SentryPlus ${ }^{T M}$ Alert technology to detect catastrophic relief valve discharge that could potentially cause flooding, and issue a multi-channel alert (call, email, text) to selected users so they can take action to avoid potentially costly flooding.

Features

- $2^{1 ⁄ 2} 2^{\prime \prime}, 3^{\prime \prime}$ and 4 " sizes available with quarter-turn ball valve shutoffs
- Replaceable check disc rubber
- Extremely compact design
- 70\% Lighter than traditional designs
- 304 (Schedule 40) stainless steel housing \& sleeve
- Groove fittings allow integral pipeline adjustment
- Patented torsion spring checks provide lowest pressure loss
- Unmatched ease of serviceability
- Bottom mounted cast stainless steel relief valve
- Available with grooved butterfly valve shutoffs

NOTICE

Inquire with governing authorities for local installation requirements
*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Contractor \qquad
Approval \qquad
Contractor's P.O. No. \qquad
Representative \qquad

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

Specifications

The Reduced Pressure Zone Assembly shall consist of two independent torsion spring check modules, a differential pressure relief valve located between and below the two modules, two drip tight shutoff valves, and required torsion spring check modules and relief valve shall be contained with a sleeve accessible single housing constructed from 304 (Schedule 40) stainless steel pipe with groove end connections. Torsion spring checks shall have replaceable elastomer discs and in operation produce drip tight closure against the reverse flow of liquid caused by backpressure or backsiphonage. Assembly shall be a Watts Regulator Company Series 957, 957N, 957 Z .

NOTICE

When installing a drain line on Series 957 backflow preventers, use 957AG air gaps. See ES-AG/EL/TC for additional information.

Available Models \& Options

Suffix:
NRS - non-rising stem, resilient seated gate valves
OSY - UL/FM outside stem and yoke resilient seated gate valves
BFG - UL/FM grooved gear operated butterfly valves with tamper switch
QT -
$2^{1 ⁄ 2 "}-4^{\prime \prime}(65-100 \mathrm{~mm})$ quarter-turn ball valves
*OSY FXG - Flanged inlet gate connection and grooved outlet gate connection
**OSY GxF - Grooved inlet gate connection and flanged outlet gate connection
${ }^{* * *}$ OSY GxG -Grooved inlet gate connection and grooved outlet gate connection
****ALERT with SentryPlus ${ }^{\text {TM }}$ Alert flood detection system
*Available with grooved NRS gate valves - consult factory
**Post indicator plate and operating nut available - consult factory
***Consult factory for dimensions
${ }^{* * * *}$ Not available with the 957 N or $957 Z$

957, 957N, $957 Z$

SIZE			DIMENSIONS								WEICHT			
in.	${ }^{\text {in. }} \quad \text { mm }$	$\begin{aligned} & \hline \mathrm{C}(\mathrm{OSY}) \\ & \text { in. } \quad \mathrm{mm} \end{aligned}$	C (NRS) in. $\quad \mathrm{mm}$	$\begin{gathered} \text { D } \\ \text { in. } \quad m m \end{gathered}$	${ }_{\text {in. }} \quad \mathrm{Gm}$	${ }_{\text {in. }} \quad \mathrm{H}$	$$	$$	$\stackrel{M}{\text { in. } \quad \quad \mathrm{mm}}$	$\begin{gathered} \text { P } \\ \text { in. } \quad m m \end{gathered}$	957NRS lbs. kgs.	9570SY lbs. kgs.	957N NRS lbs. kgs.	957N OSY lbs. kgs.
$21 / 2$	$303 / 4 \quad 781$	$163 / 8416$	$93 / 8 \quad 238$	$61 / 2 \quad 165$	291116 738	211⁄2 546	$151 / 2393$	$8{ }^{13 / 16} \quad 223$	211/4 540	93/16 234	$118 \quad 54$	12858	$126 \quad 57$	$136 \quad 62$
3	$313 / 4 \quad 806$	187/8 479	101/4 260	$611 / 16170$	$301 / 4$	$221 / 4 \quad 565$	$171 / 8435$	93/16 233	$23 \quad 584$	$101 / 2267$	$134 \quad 61$	14867	14767	$161 \quad 73$
4	$333 / 4 \quad 857$	223/4 578	123/16 310	$7 \quad 178$	33838	23112597	$181 / 2470$	915/16 252	$261 / 466$	113/16 284	16474	16474	18785	18785
6	$431 / 21105$	$301 / 8765$	16406	$81 / 2216$	$443 / 41137$	331122851	233/16 589	$131 / 16332$	$341 / 4870$	$15 \quad 381$	276125	298135	317144	339154
8	493/4 1264	373/4 959	1915/16 506	$9^{111 / 16} 246$	$541 / 81375$	401⁄8 1019	277/16 697	$15^{11 / 16} 399$	$367 / 8937$	173/16 437	441200	483219	516234	558253
10	573/4 1467	453/4 1162	$23^{13 / 16} 605$	$113 / 16285$	661676	491⁄2 1257	32½ 826\|	175/16 440	$441 / 21124$	20 508	723328	783355	893405	950431

957NBFG, 957ZBFG

SIZE	DIMENSIONS												WEICHT	
	G		H		1		J		M		P		957N/9572	
in.	in.	mm	lbs.	kgs.										
21/2	$321 / 2$	826	23	584	151/2	394	91/2	241	193/4	502	1113/16	300	67	30
3	34	864	24	610	165/16	414	101/16	256	$211 / 4$	540	121/8	308	70	32
4	355/8	905	251/2	648	173/16	437	1015/16	279	231/2	597	125/8	321	87	39
6	461/2	1181	$35^{1 / 4}$	895	201/2	521	$13^{1 / 2}$	343	271/4	692	15	382	160	73

Nory ${ }^{\circledR}$ is a registered trademark of SABIC Innovative Plastics Holding BV.

Dimensions - Weight

Materials

Housing \& Sleeve: 304 (Schedule 40) Stainless Steel
Elastomers: EPDM, Silicone and Buna-N
Torsion Spring Checks: Noryl ${ }^{\circledR}$, Stainless Steel
Check Discs: Reversible Silicone or EPDM
Test Cocks: Lead Free* Bronze Body
Pins \& Fasteners: 300 Series Stainless Steel
Springs: Stainless Steel

Pressure - Temperature

Temperature Range: $33^{\circ} \mathrm{F}-140^{\circ} \mathrm{F}\left(0.5^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}\right)$
Maximum Working Pressure: 175psi (12.1 bar)

Approvals

- Approved by the Foundation for Cross-Connection Control and Hydraulic Research at The University of Southern California (FCCCHR-USC)
(Excluding 'N' Pattern - 10", 'Z' Pattern - 6" and 10")
- AWWA C511-97

For additional approval information please contact the factory or visit our website at Watts.com

Dimensions - Weight continued

957 BFG

SIZE	DIMENSIONS								WEIGHT	
in.	in.	mm		mm	in.	mm	in.	mm	lbs.	kgs.
4	29	737	$73 / 4$	197	63/8	162	9112	241	66	30
6	$361 / 2$	927	911/16	246	77/16	189	141/4	362	122	55

957QT

SIZE	DIMENSIONS															WEICHT			
	A	C	D	G	H		1	J		M		P		P1		QT		QTN	
in.	in. mm	in. mm	in. mm	in. mm	in.	mm	in. mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kgs.	lbs.	kgs.
$2^{1 / 2}$	$271 / 2698$	$47 / 8124$	$67 / 8 \quad 175$	$301 / 4768$	211/2	546	$16^{1 / 16} 407$	113/8	289	197/8	505	115/16	287	115/16	287	46	21	57	26
3	$28 \quad 711$	$47 / 8124$	$67 / 8 \quad 175$	$301 / 4768$	221/4	565	$169 / 16420$	113/8	289	207/8	531	115/16	287	115/16	287	56	25	67	30
4	283/4 730	$\begin{array}{ll}47 / 8 & 124\end{array}$	$67 / 8 \quad 175$	301/4 768	$231 / 2$	597	185/16 465	113/8	289	$243 / 8$	619	115/16	287	115/16	287	76	34	87	39

Capacity

Series 957, 957N, 957Z flow curves as tested by Underwriters Laboratory.

Flow characteristics collected using butterfly shutoff valves
\qquad Horizontal \qquad N -Pattern \qquad Z-Pattern

$Q=80 \mathrm{gpm}$

4" BFG Horizontal

Flow capacity chart identifies valve performance based upon rated water velocity up to 25 fps

- Service Flow is typically determined by a rated velocity of 7.5 fps based upon schedule 40 pipe.
- Rated Flow identifies maximum continuous duty performance determined by AWWA.
- UL Flow Rate is 150% of Rated Flow and is not recommended for continuous duty.
- AWWA Manual M22 [Appendix C] recommends that the maximum water velocity in services be not more than 10 fps .

Job Name Rural Outreach Center
Job Location $\mathbf{7 3 0}$ Olean Road, Aurora, NY
Engineer C\&S Engineers, Inc.
Approval

LEAD FREE*

 Series LF757DCDA, LF757NDCDA
Double Check Detector Assemblies

Sizes: $\mathbf{2}^{1 / 21 "}-10^{\prime \prime}$
Series LF757DCDA, LF757NDCDA Double Check Detector Assemblies are used to prevent backflow of non-health hazard pollutants that are objectionable but not toxic, from entering the potable water supply system. The LF757DCDA, LF757NDCDA may be installed under continuous pressure service and may be subjected to backpressure and backsiphonage. Series LF757DCDA, LF757NDCDA is used primarily on fire line sprinkler systems when it is necessary to monitor unauthorized use of water.

Features

- Lead Free* construction
- Extremely compact design
- 70% lighter than traditional designs
- 304 (Schedule 40) stainless steel housing \& sleeve
- Groove fittings allow integral pipeline adjustment
- Unique tri-link spring check provides lowest pressure loss
- Unmatched ease of serviceability
- Available with grooved butterfly valve shutoffs
- May be used for horizontal, vertical or N pattern installations
- Replaceable check disc rubber

Specifications

The Lead Free* Double Check Detector Assembly shall consist of two independent tri-link check modules within a single housing, sleeve access port, four test cocks and two drip tight shutoff valves. Tri-link checks shall be removable and serviceable, without the use of special tools. The housing shall be constructed of 304 Schedule 40 stainless steel pipe with groove end connections. Tri-link checks shall have reversible elastomer discs and in operation shall produce drip tight closure against reverse flow caused by backpressure or backsiphonage. The bypass assembly shall consist of a meter, which registers in either gallon or cubic measurement, a double check backflow assembly and required test cocks. Assembly shall be a Watts Series LF757DCDA, LF757NDCDA.

Contractor
Approval
Contractor's P.O. No.
Representative

LF757DCDAOSY

LF757NDCDAOSY

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.
*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Available Models

Suffix:
OSY - UL/FM outside stem and yoke resilient seated gate valves

BFG - UL/FM grooved gear operated butterfly valves with tamper switch
**OSY FxG - Flanged inlet gate connection and grooved outlet gate connection
**OSY GxF - Grooved inlet gate connection and flanged outlet gate connection
**OSY GxG - Grooved inlet gate connection and grooved outlet gate connection
Available with grooved NRS gate valves - consult factory**
Post indicator plate and operating nut available - consult factory**
**Consult factory for dimensions
Dimensions - Weight

LF757DCDA, LF757NDCDA

SIZE	dimensions																WEICHT			
	A		C (OSY)		D		G		H		1		J		P		LF757DCDA		LF757NDCDA	
in.	in.	mm	los.	kgs.	lbs.	kgs.														
$21 / 2$	$303 / 4$	781	163/8	416	31/2	89	291/16	738	$21^{1 / 2}$	546	$15^{1 / 2}$	393	813/16	223	133/16	335	139	63	147	67
3	$313 / 4$	806	187/8	479	311/16	94	301/4	768	221/4	565	171/8	435	93/16	233	141/2	368	159	72	172	78
4	$333 / 4$	857	$22^{3 / 4}$	578	4	102	33	838	$231 / 2$	597	181/2	470	915/16	252	153/6	386	175	79	198	90
6	$431 / 2$	1105	301/8	765	51/2	140	443/4	1137	$331 / 4$	845	233/16	589	131/16	332	19	483	309	140	350	159
8	493/4	1264	373/4	959	$6^{11 / 16}$	170	541/8	1375	401/8	1019	277/16	697	1511/16	399	213/16	538	494	224	569	258
10	$573 / 4$	1467	453/4	1162	$83 / 16$	208	66	1676	491/2	1257	$321 / 2$	826	175/16	440	24	610	795	361	965	438

LF757DCDABFG, LF757NDCDABFG

SIZE	DIMENSIONS																WEICHT			
	A		C		D		G		H		I		J		P		LF757DCDABFG		LF757NDCDA BFG	
in.	in.	mm	lbs.	kgs.	lbs.	kgs.														
$2^{1 / 2}$	$27^{3 / 4}$	705	8	203	31/2	89	297/8	759	211/2	546	1415/6	379	$8^{13 / 16}$	223	13	330	70	32	78	35
3	281/4	718	85/16	211	$3^{11 / 16}$	94	3011/16	779	221/4	565	157/16	392	93/16	233	$13^{1 / 2}$	343	68	31	81	37
4	29	737	815/16	227	$3^{11 / 16}$	94	3115/16	811	231/2	597	$16^{1 / 4}$	412	915/16	252	14	356	75	34	98	44
6	$361 / 2$	927	10	254	5	127	433/16	1097	331/4	845	1911/6	500	$13^{1 / 16}$	332	$141 / 2$	368	131	59	171	78
8	423/4	1086	$12^{1 / 4}$	311	$61 / 2$	165	511/16	1297	401/8	1019	235/16	592	1511/16	399	183/16	462	275	125	351	159

Nory ${ }^{\circledR}$ is a registered trademark of General Electric Company.

Capacity

Series LF757DCDA flow curves as tested by Underwriters Laboratory. Flow characteristics collected using butterfly shutoff valves

Flow capacity chart identifies valve performance based upon rated water velocity up to 25fps

- Service Flow is typically determined by a rated velocity of 7.5 fps based upon schedule 40 pipe.
- Rated Flow identifies maximum continuous duty performance determined by AWWA.
- UL Flow Rate is 150% of Rated Flow and is not recommended for continuous duty.
- AWWA Manual M22 [Appendix C] recommends that the maximum water velocity in services be not more than 10fps.

NOTICE
Inquire with governing authorities for local installation requirements

Dischrge Coef: . 90 Elvtn Usgs(ft): Gallons Used..:	$3,4200^{\text {Static(psi): }}$: 64 Residual(psi): Total Flow(gpm):	56 Required Residual Pressure(psi): 1,138 Flow at Reqd Resid Pressure:	$\begin{aligned} & 20 \\ & 2,857 \end{aligned}$
Flow Hydrants:				
¢ Elow Hyd Flow Hydrant Address	Main/Brnch	Nzle Size Pitot Flow	comments	
- N17 F05 OP 725 OLEAN RD	8"/6"	1: $2.50 \quad 46.0$ 1,138		
9TH HYD N/O BLAKELEY RD		2:	Tot Flow: 1,138	

Bottom

I=Flow Hydrant Inquiry
ENTER=Continue F3=Exit F6=Maintain Test F7=Test Hydrant Inquiry F15=Print Test Information

Service Address
730 OLEAN RD
EAST AURORA NY 14052

Cross Streets

LAPHAM RD	(NSEW) : N
RTE 400	(NSEW) : S

NSEW) : N
(NSEW): S

ECWA Service Information:
Service Size...: 1" Depth.: . 0 Type: RESID
Matl @ Main/Src: COPPER/SRVC MATL
Matl @ Box/Src.: COPPER/SRVC MATL
Main Size/Type.: 8" PV Side of Street:E
Color of Main.. : WHITE

Customer Line Information:
Line Size: 1"
Matl @ Box/Src.: COPPER/SRVC MATL
Matl @ Met/Src.: COPPER/MET ORD

Service Started: 7/01/2015
Date Tapped....: 6/14/2015 Date Replaced.:
Field Book/Page:
Description of Curb Box Measurements
Materials
$\begin{aligned} 74.0 & \text { HOUSE TO BOX, } \\ 2.0 & \text { BOX TO MAIN, } \\ 10.0 & \text { LEFT OF LHC, }\end{aligned}$
SADDLE
CORP
COPPER
C+C STOP

$8^{\prime \prime} \mathrm{X}$	$1 "$
	$1 "$
2^{\prime}	$1 "$
	$1^{\prime \prime}$

95E BOX

Service :

906000961

Type: Neu Seprice - Replacement - Measurement
Location: -730 OLEAN RO, Inspected by: 659 Town: AUTN

Qty.	Uniil	CONTRACT ITEMS (circle one)			
		-	3/4" (1)	13, $2^{\text {a }}$	
-	Each		1 Al	1A2	B
F-	Each		1B1	1 B 2	B
1	Each		CICD	1 C 2	18
	Each		(D)	1D2	S
	Each		1 D3	1D4	S
-	LF		2A1	2 A 2	P
	LF		2 A 3	2 A 4	P.
	Each	3A	new of 3	xisting	M
	CY	4Al			R
	LF	4 BI			R
	LF		4B2.		R
	LF			4B3	R
	CY	5A1	\cdots	-	T
	Hrs	7 Al			C
	Hrs	7 A 2			D
2	FT Total Installation				

nspection Date:

MATERIALS					
DESCRIPTION	SIZE				
Saddle	8×1 Brass				
Corp.	$5 / 8$	$3 / 4$.	(12	$11 / 2^{\prime \prime}$	2",
C \& C Stop		3/4"	(17)	$11 / 2^{\prime \prime}$	$2^{\prime \prime}$
Copper $\quad 2 \mathrm{Ft}$		$3 / 4$.	(ii)	$11 / 2^{\prime \prime}$	$2^{\prime \prime}$
Curb Box		958			
Tile Sctting Meter No.					

0 Date Tapped: $6(141,5$ Date Replaced: \qquad Field Book: \qquad Page: \qquad

CURB BOX MEASUREMENTS

House to Box
Box to Main
$\operatorname{con} 2$

Service Notes:

Road Shoulder:
\qquad

APPENDIX E

FEMA FIRMette MAP

www.cscos.com | (877) CS-SOLVE

