

۲

ENGINEER'S REPORT

FOR

RURAL OUTREACH CENTER

730 OLEAN ROAD EAST AURORA, NY 14052

Prepared for: Fontanese Folts Aubrecht Ernst Architects PC 6395 West Quaker Street Orchard Park, NY 14127

> Prepared by: C&S ENGINEERS, INC. 141 Elm Street, Suite 100 Buffalo, NY 14203

> > May 14, 2021

Table of Contents

GENERAL	1
Existing Site Conditions	1
Proposed Site Conditions	
PROPOSED FACILITIES	
STORMWATER MANAGEMENT	2
SANITARY SEWER	4
WATER	5
100-YR FLOODPLAIN INFORMATION	6

APPENDIX A	SITE LOCATION MAP
APPENDIX B	STORMWATER CALCULATIONS
APPENDIX C	SANITARY SEWER AND SEPTIC SYSTEM CALCULATIONS
APPENDIX D	WATER CALCULATIONS
APPENDIX E	FEMA FIRMette MAP

A. GENERAL

1. Existing Site Conditions:

The project site is located at 730 Olean Road, in the Town of Aurora, New York. The site is situated on a 7.20+/- acre parcel and consists of an existing metal clad trailer/ building, a storage shed, an asphalt paved parking lot for 6 vehicles, a gravel drive and lawn areas along the front of the parcel. The remainder of the site is heavily wooded. The site generally slopes in a southwesterly direction and consists of three drainage areas, a northern drainage area, a central drainage area and a southern drainage area. The northern drainage area consists mostly of wooded areas (trees and light underbrush). Stormwater runoff from the northern drainage area consists of the majority of the wooded area, along with the existing metal clad trailer/building, storage shed, asphalt parking lot and gravel drive. Stormwater runoff from the central drainage area flows overland to the existing ditch along Olean Road. The southern drainage area flows onto the adjacent property to the south.

The soils on the site, according to the United State Department of Agriculture's National Resources Conservation Service are Orpark silt loam (OrC) and Rhinebeck gravelly loam (RkB), which are both listed as Hydrologic Soil HSG "C/D". For dual hydrologic group soils, the first letter is for drained areas and the second is for undrained areas. Only soils that in their natural condition are in group D are assigned to dual classes.

2. Proposed Site Conditions:

Development will consist of removal of the existing metal clad trailer/building and storage shed and demolition of the existing asphalt paved parking lot and gravel drive to accommodate the construction of a single-story, 9,738 s.f. building along with site improvements. Site improvements include two asphalt paved parking lots to accommodate 60 parking spaces including 3 handicap accessible parking spaces, at concrete sidewalks, a stormwater detention basin, two bio-retention basins, a new septic system, new domestic and fire protection water services and site landscaping.

Upon completion, the proposed project will add 0.78 acres of new impervious cover and 0.43 acres of reconstructed impervious area. The total anticipated ground disturbance during construction of this project will be approximately 3.90 acres. Due to the increase in impervious areas, stormwater detention is required. Additionally, since the construction of this site will disturb more than one acre, a Storm Water Pollution Prevention Plan (SWPPP), in accordance with the New York State Department of Environmental Conservation (NYSDEC) standards will be prepared and a NOI (Notice of Intent) will be filed prior to beginning construction.

B. PROPOSED FACILITIES

1. Stormwater Management

a. Stormwater Conveyance

Under proposed conditions, stormwater runoff will continue to follow the existing drainage patterns. Stormwater runoff from the new building will be collected and treated within a bioretention basin and then piped to the stormwater detention basin. Stormwater runoff from the asphalt paved parking lots will be collected and treated within a bioretention basin located between the two parking lots and then piped to the stormwater detention basin. Stormwater runoff from the access drive and lawn areas will be collected and conveyed to the stormwater detention basin. Discharge from the stormwater detention basin will be conveyed to the existing roadside drainage ditch along Olean Road. Stormwater runoff from the air grade drainage ditch along Olean Road.

b. Quantity Control

New York State Department of Environmental Conservation regulations require design of stormwater detention facilities to limit the peak discharge produced by the 10-year and 100-year storm events to the pre-developed runoff rates, as well as provide extended detention of the 1-YR, 24-HR storm event (channel protection volume).

As mentioned above, stormwater runoff from the new building as well as the two parking lots will be conveyed to a stormwater detention basin. The stormwater detention basin has been sized for future site improvements that includes a 4,480 s.f. stand-alone building. Stormwater discharge from the detention basin is limited by a control structure that consists of a 12-inch diameter HDPE inlet pipe, a 7.4-inch orifice, a 4-foot long sharp crested weir and an 18-inch diameter HDPE outlet pipe.

The channel protection volume (CPv) requirement is relaxed for redevelopment projects with an increase in impervious area. The post development 1-YR storm event discharge rate will be less than the pre-development 1-YR storm event discharge rate.

The stormwater detention calculations were completed using HYDROCAD, version 10 software. Following is a summary of the pre and post development discharge rates and associated detention volumes and water surface elevations:

Storm Event	Pre-Development Discharge (cfs)	Post-Development Discharge (cfs)	Detention Volume (cf)	Water Surface Elevation (feet)
1-YR	2.65	2.63	1,181	885.79
10-YR	8.55	8.41	4,564	886.73
100-YR	20.37	20.25	8,164	887.36

Discharge to Olean Road Drainage Ditch:

Discharge to South:

Storm Event	Pre-Development Discharge (cfs)	Post-Development Discharge (cfs)
1-YR	0.13	0.12
10-YR	0.52	0.49
100-YR	1.36	1.29

Quality Control:

Chapters 3-5 of the NYSDEC Stormwater Management Design Manual (SMDM) provides a green infrastructure approach to stormwater management to reduce a site's impact on the aquatic ecosystem through the use of site planning techniques, runoff reduction techniques, and standard SMP's. Runoff Reduction Volume (RRv) is the reduction of the total Water Quality Volume (WQv) by application of green infrastructure techniques and SMP's to replicate pre-development hydrology.

The NYSDEC SMDM's intent is for projects to meet 100% of runoff reduction volume through the use of green infrastructure techniques. Projects that do not achieve runoff reduction to pre-construction condition must, at a minimum, provide the minimum RRv as well as provide the remaining WQv in standard SMPs.

Two (2) bio-retention facilities will be used to treat impervious areas on-site to offset the WQv and RRv required by the new impervious area and reconstructed impervious area from the total site disturbance area.

The minimum RRv requirement has been attained through the use of the bioretention facilities. Additionally, the required water quality treatment volume will be provided in the bio-retention facilities. This project is considered a redevelopment project with an increase in impervious area. Therefore, per Chapter 9.2.1.B.II, a standard SMP will be used to treat 100% of the WQv from new impervious areas and 25% of the WQv from reconstructed impervious areas.

Below is a summary of the water quality volume and runoff reduction volumes attained on site:

Total Water Quality Volume Required (WQv):	3,061 cf
100% WQv req'd from new impervious area:	2,690 cf

25% WQv req'd from reconstructed impervious using standard SMP: 0.25(1,483	cf) = 371 cf
	c_{I} = 571 c_{I}
Minimum Runoff Reduction Volume Required (RRv, min)	538 cf
East Bioretention Basin:	
WQ _v Required	2,000 cf
WQ _v Provided	1,200 cf
RR _v Provided	800 cf
(Standard SMP with Runoff Reduction Volume)	
- due to HSG D soils, $RRv = 40\%$ WQv for bioretentic	on basins
North Bioretention Basin:	
WQ _v Required	1,228 cf
WQ _v Provided	737 cf
RR _v Provided	491 cf
(Standard SMP with Runoff Reduction Volume)	
- due to HSG D soils, RRv = 40% WQv for bioretentic	on basins
Total RRv Provided:	1,291 cf
Total WQv Provided (WQv provided + RRv provided):	3,228 cf

Stormwater calculations are included in Appendix B.

2. Sanitary Sewer

Public sewer is not available in the vicinity of the site. Currently, the existing metal clad trailer/building discharges to an existing holding tank which gets emptied periodically and when necessary.

A new sand filter and downstream absorption trench septic system has been designed for the site. As per Erie County Health Department and NYSDEC requirements, a 6-foot deep hole test was performed. The deep hole test confirmed that bedrock is greater than 30-inches below existing grade at the location of the proposed sand filter. (no bedrock was encountered at the depth of the deep hole tests, which terminated at 12 feet below existing grade). In conducting the percolation tests, one of the three perc tests failed (water elevation did not drop from presoak, after 24 hours). Accordingly, a sand filter system with downstream absorption trenches have been designed. Refer to Appendix C for the reports. The septic system will consist of a 1,500 gallon, septic tank and effluent pump to an intermittent sand filter with (8) 40 If distribution lines followed by (6) 57 If long downstream "modified" shallow absorption trenches. A design flow of 960 gal/day has been calculated based on the worst case sewer loading scenario. See septic calculations in Appendix C. The new septic system design will be submitted to the Erie County Health Department for their review and approval.

Design Parameters -

- 1) Hydraulic Loading Rate per "Design Standards for Intermediate Sized Wastewater Treatment Systems", 2014, NYSDEC.
- 2) Loading Rates:

Church/multi-purpose = 2.4 gpd/seat (3 gpd/seat reduced by 20% w/using water saving plumbing fixtures) Office = 12 gpd/employee (15 gpd/employee reduced by 20% w/using water saving plumbing fixtures) Classroom = 8 gpd/seat (10 gpd/seat reduced by 20% w/using water

saving plumbing fixtures)

Kitchen/Banquet = 8 gpd/seat (10 gpd/seat reduced by 20% w/using water saving plumbing fixtures)

3) Facilities/employees:

Offices = 14 full-time staff and 8 full-time visitors = 22 people Classrooms = 2 classrooms w/ 10 people/room = 20 people Church = 120 people total (including staff) Banquet = 120 people total (including staff)

4) Design Flow Scenarios:

Scenario #1: continuation of existing counseling services (office and classrooms)

Average daily flow = 100 gpd (per existing ECWA consumption records

Scenario #2: Church Service Average daily flow = (120 people)(2.4 gpd/person) = 288 gpd

Scenario #3: Banquet Event Average daily flow = (120 people)(8 gpd/person) = 960 gpd

Use Average Daily Flow = 960 gpd

$5) \qquad \text{Peak Factor} = 4.22$	5)	Peak Factor $= 4.22$	
---------------------------------------	----	----------------------	--

6) Peak Hourly Flow = (Average Daily Flow)(Peak Factor) = (960 gpd)(4.22) = 4,051 gpd = 5.6 gpm

3. Water System

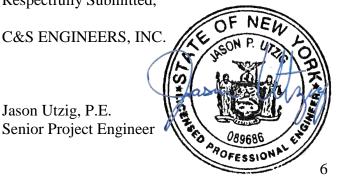
The existing 8-inch watermain along Olean Road will be tapped off of with a 6-inch tapping sleeve and valve. The 6-inch water service will be split at the property line into a 6-inch CL52 ductile iron private fire service and a 3 inch CL52 ductile iron domestic water service. Both services will enter into a Hotbox Enclosure located near the northwest corner of the site to provide backflow protection requirements. The 6-inch private fire service will be backflow protected with a 4-inch Watts LF757 DCDA. The 3-inch domestic service will have a 2-inch Neptune T-10 meter and be backflow protected with a 2 ¹/₂-inch Watts LF957

RPZ. Both services will exit out of the Hotbox Enclosure and transition from ductile iron to AWWA C900 PVC (for private fire service) and AWWA C901 PE pipe (for domestic water service) and continue along the northern portion of the property, then enter into the building.

Design Criteria (Appendix D):

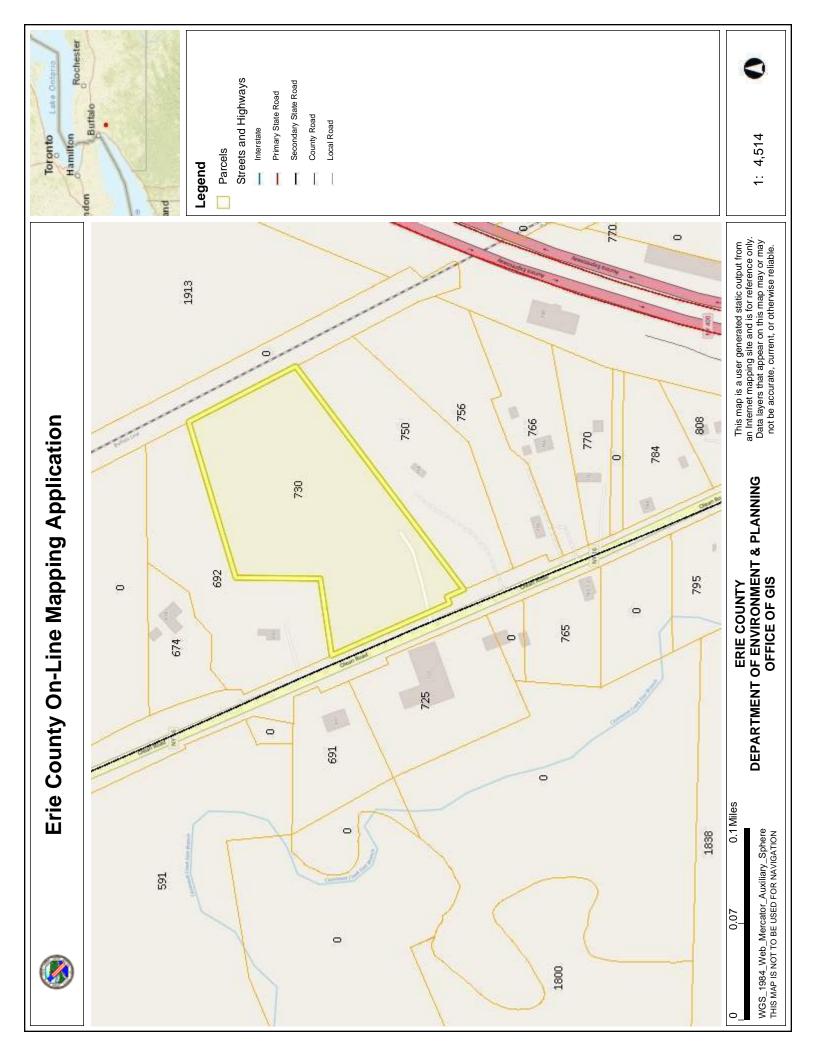
1)	Domestic Peak Operating Demand:	5.6 gpm
	(use 80 gpm per plumbing engineer's fixture unit calculat	ions)
2)	Static Pressure in 8-inch watermain on Olean Road:	64 psi
3)	Residual Flow in 8-inch watermain on Olean Road:	1,138 gpm
	w/ 50	5 psi residual
4)	Friction Loss through 3-inch domestic service:	2.4 psi
5)	Friction Loss through fittings	1 psi
6)	Friction Loss due to elevation:	8.2 psi
7)	Friction Loss through 2-inch Neptune T-10 meter:	2.5 psi
8)	Friction Loss through 2 ¹ / ₂ -inch Watts LF957 RPZ:	10 psi
9)	Residual Pressure @ building for domestic service:	31.8 psi
Assun	ning 500 gpm fire flow required (per plumbing engineer):	
10)	Friction Loss through 6" fire service:	2.5 psi
11)	Friction Loss through fittings	1 psi
12)	Friction Loss due to elevation:	8.2 psi
13)	Friction Loss through 4-inch Watts LF757 DCDA	8 psi
14)	Residual Pressure @ bldg. for fire service	
	with 500 gpm fire flow:	36.3 psi

(Static pressure, residual pressure and flow within the 8-inch watermain was provided by the Erie County Water Authority. Hydrant Flow Test was performed on 11/10/2009.)

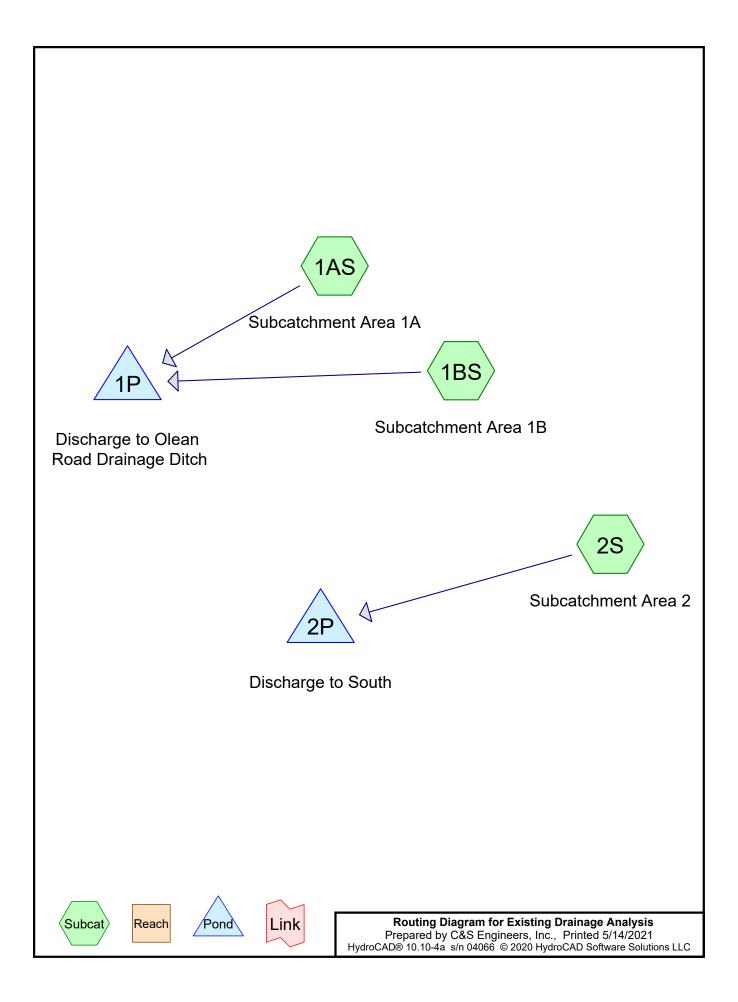

Disinfection of water services following construction will be continuous feed, in accordance with AWWA C-651, latest revision requirements. Water demand calculations are included in Appendix D.

4. 100-YR Floodplain Information

The site is not located in a 100-year flood plain.


Respectfully Submitted,

Jason Utzig, P.E. Senior Project Engineer


APPENDIX A

SITE LOCATION MAP

APPENDIX B

STORMWATER CALCULATIONS

Existing Drainage Analysis Prepared by C&S Engineers, Inc. HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC	
	Name				(hours)		(inches)		
 1	1yr	Type II 24-hr		Default	24.00	1	1.88	2	
2	10yr	Type II 24-hr		Default	24.00	1	3.15	2	
3	100yr	Type II 24-hr		Default	24.00	1	5.25	2	

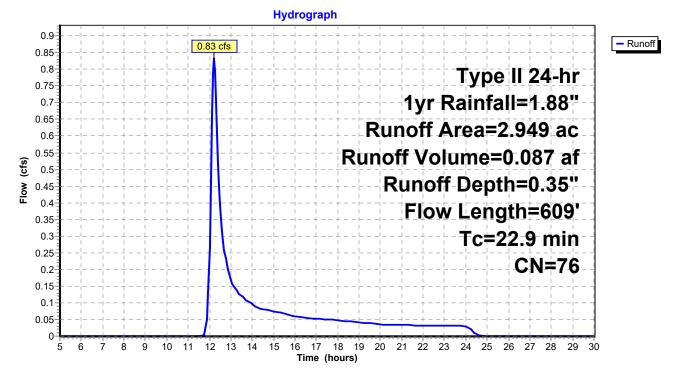
Rainfall Events Listing

Existing Drainage Analysis

Prepared by C&S Engineers, Inc.	
HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LL	С

			Pipe Listing (selected houes)							
	Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
_		Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
_	1	1BS	0.00	0.00	163.0	0.0500	0.025	12.0	0.0	0.0

Pipe Listing (selected nodes)


Summary for Subcatchment 1AS: Subcatchment Area 1A

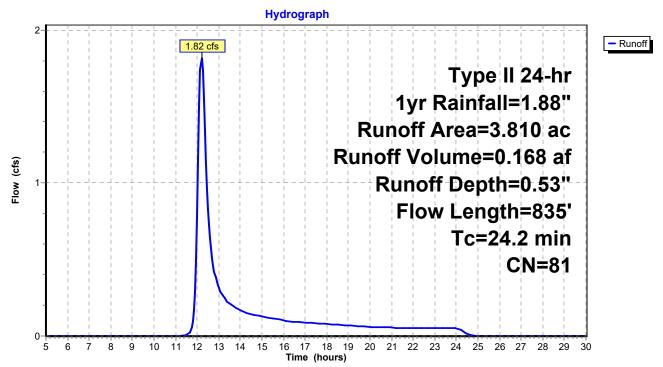
Runoff = 0.83 cfs @ 12.20 hrs, Volume= 0.087 af, Depth= 0.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1yr Rainfall=1.88"

Area	(ac) C	N Desc	cription				
2.	.042 7	7 Woo	ds, Good,	HSG D			
0.907 73 Brush, Good, HSG D							
2.	.949 7		ghted Aver				
2.	.949	100.	00% Pervi	ous Area			
_				•	-		
Тс	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.6	42	0.1607	0.12		Sheet Flow, AB		
					Woods: Light underbrush n= 0.400 P2= 2.20"		
9.3	58	0.0870	0.10		Sheet Flow, BC		
					Woods: Light underbrush n= 0.400 P2= 2.20"		
3.4	232	0.0518	1.14		Shallow Concentrated Flow, CD		
					Woodland Kv= 5.0 fps		
4.6	277	0.0405	1.01		Shallow Concentrated Flow, DE		
					Woodland Kv= 5.0 fps		
22.9	609	Total					

Subcatchment 1AS: Subcatchment Area 1A

Summary for Subcatchment 1BS: Subcatchment Area 1B

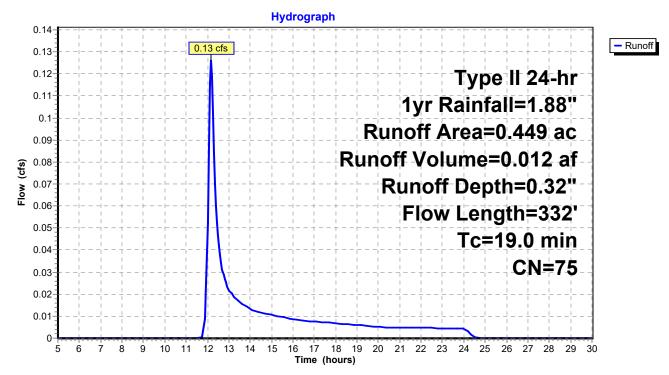

Runoff = 1.82 cfs @ 12.20 hrs, Volume= 0.168 af, Depth= 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1yr Rainfall=1.88"

	Area	(ac) C	N Desc	cription						
	1.	880 7	7 Woo	ds, Good,	HSG D					
	0.	429 9	8 Pave	ed parking	, HSG D					
_	1.501 80 >75% Grass cover, Good, HSG D									
	3.810 81 Weighted Average									
	3.	381	88.7	4% Pervio	us Area					
	0.	429	11.2	6% Imper\	∕ious Area					
	_				a 14	— • • • •				
	ŢĊ	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	14.7	100	0.0824	0.11		Sheet Flow, AB				
						Woods: Light underbrush n= 0.400 P2= 2.20"				
	9.0	572	0.0448	1.06		Shallow Concentrated Flow, BC				
						Woodland Kv= 5.0 fps				
	0.5	163	0.0500	5.27	4.14	Pipe Channel, CD				
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
						n= 0.025 Corrugated metal				
	24.2	835	Total							

24.2 835 Total

Subcatchment 1BS: Subcatchment Area 1B

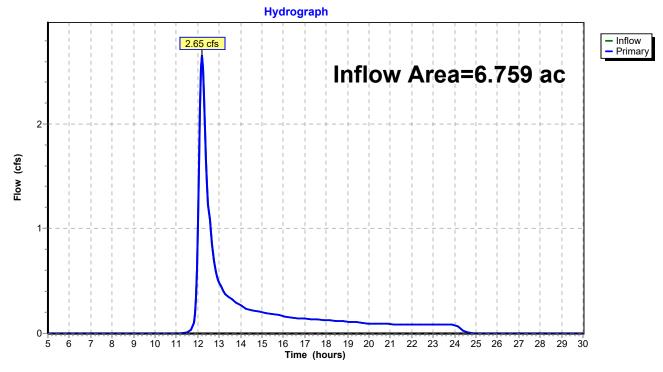

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff = 0.13 cfs @ 12.16 hrs, Volume= 0.012 af, Depth= 0.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1yr Rainfall=1.88"

Area	(ac) C	N Dese	cription							
-			ds, Good,							
0.	<u>.215 7</u>	73 Brus	h, Good, H	ISG D						
0.	0.449 75 Weighted Average									
0.	449	100.	00% Pervi	ous Area						
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
15.0	100	0.0780	0.11		Sheet Flow, AB					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
4.0	232	0.0377	0.97		Shallow Concentrated Flow, BC					
					Woodland Kv= 5.0 fps					
19.0	332	Total								

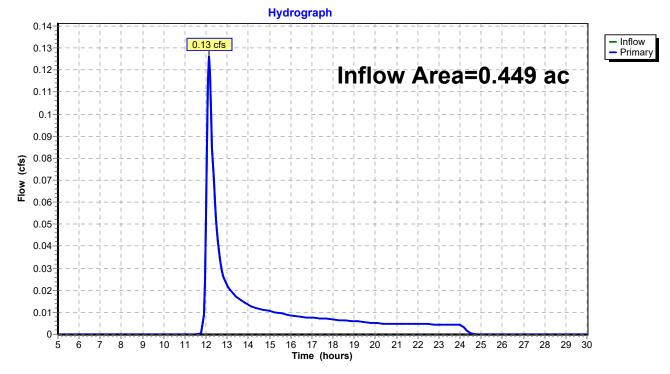
Subcatchment 2S: Subcatchment Area 2


Summary for Pond 1P: Discharge to Olean Road Drainage Ditch

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	6.759 ac,	6.35% Impervious, Inflow D	epth = 0.45" for 1yr event
Inflow =	2.65 cfs @	12.20 hrs, Volume=	0.255 af
Primary =	2.65 cfs @	12.20 hrs, Volume=	0.255 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs



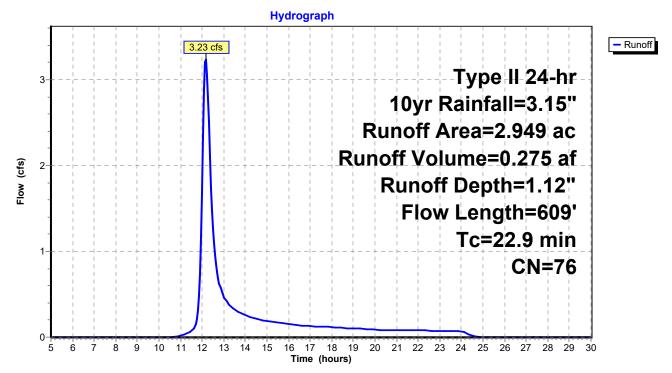
Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	. =	0.449 ac,	0.00% Impervious, Inflow D	Depth = 0.32" for 1yr event
Inflow	=	0.13 cfs @	12.16 hrs, Volume=	0.012 af
Primary	=	0.13 cfs @	12.16 hrs, Volume=	0.012 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Pond 2P: Discharge to South

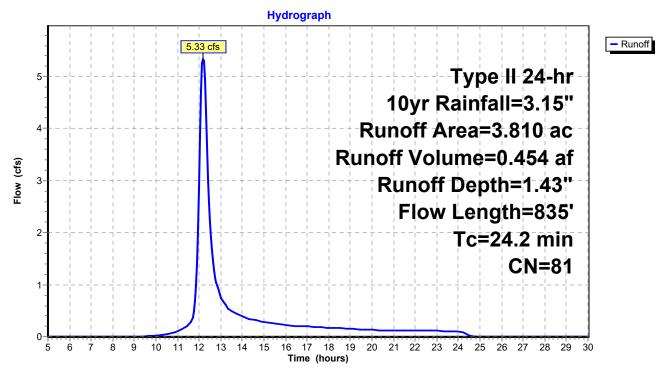

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff = 3.23 cfs @ 12.17 hrs, Volume= 0.275 af, Depth= 1.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10yr Rainfall=3.15"

Area	(ac) C	N Desc	cription							
2.042 77 Woods, Good, HSG D										
0.	0.907 73 Brush, Good, HSG D									
2.	.949 7		ghted Aver							
2.	.949	100.	00% Pervi	ous Area						
_				•	-					
Тс	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.6	42	0.1607	0.12		Sheet Flow, AB					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
9.3	58	0.0870	0.10		Sheet Flow, BC					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
3.4	232	0.0518	1.14		Shallow Concentrated Flow, CD					
					Woodland Kv= 5.0 fps					
4.6	277	0.0405	1.01		Shallow Concentrated Flow, DE					
					Woodland Kv= 5.0 fps					
22.9	609	Total								

Subcatchment 1AS: Subcatchment Area 1A


Summary for Subcatchment 1BS: Subcatchment Area 1B

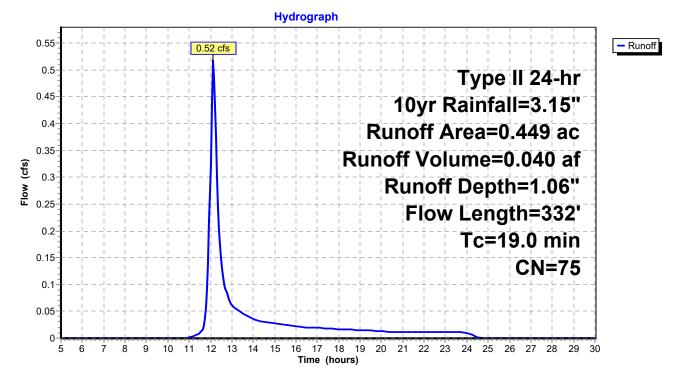
[47] Hint: Peak is 129% of capacity of segment #3

Runoff = 5.33 cfs @ 12.18 hrs, Volume= 0.454 af, Depth= 1.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10yr Rainfall=3.15"

Area	(ac) C	N Dese	cription		
1.	880 7	77 Woo	ds, Good,	HSG D	
0.	429 9	98 Pave	ed parking,	HSG D	
1.	<u>501 8</u>	30 > 759	% Grass co	over, Good,	, HSG D
3.	810 8	31 Weig	ghted Aver	age	
3.	381	88.7	4% Pervio	us Area	
0.	429	11.2	6% Imperv	vious Area	
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.7	100	0.0824	0.11		Sheet Flow, AB
					Woods: Light underbrush n= 0.400 P2= 2.20"
9.0	572	0.0448	1.06		Shallow Concentrated Flow, BC
					Woodland Kv= 5.0 fps
0.5	163	0.0500	5.27	4.14	Pipe Channel, CD
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.025 Corrugated metal
24.2	835	Total			

Subcatchment 1BS: Subcatchment Area 1B

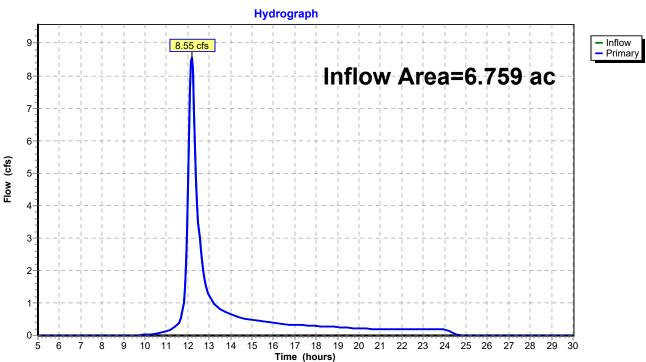

Summary for Subcatchment 2S: Subcatchment Area 2

0.52 cfs @ 12.13 hrs, Volume= 0.040 af, Depth= 1.06" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10yr Rainfall=3.15"

Area	(ac) C	N Dese	cription							
-			ds, Good,							
0.215 73 Brush, Good, HSG D										
C	0.449 75 Weighted Average									
C	.449	100.	00% Pervi	ous Area						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
15.0	100	0.0780	0.11		Sheet Flow, AB					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
4.0	232	0.0377	0.97		Shallow Concentrated Flow, BC					
					Woodland Kv= 5.0 fps					
19.0	332	Total								

Subcatchment 2S: Subcatchment Area 2

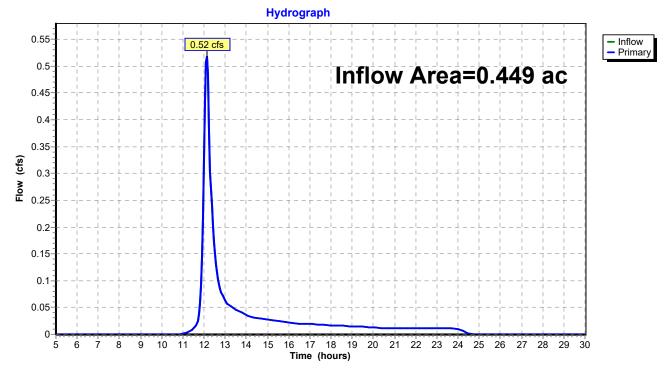


Summary for Pond 1P: Discharge to Olean Road Drainage Ditch

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	6.759 ac,	6.35% Impervious, Inflow D	epth = 1.29" for 10yr event
Inflow =	8.55 cfs @	12.18 hrs, Volume=	0.729 af
Primary =	8.55 cfs @	12.18 hrs, Volume=	0.729 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs


Pond 1P: Discharge to Olean Road Drainage Ditch

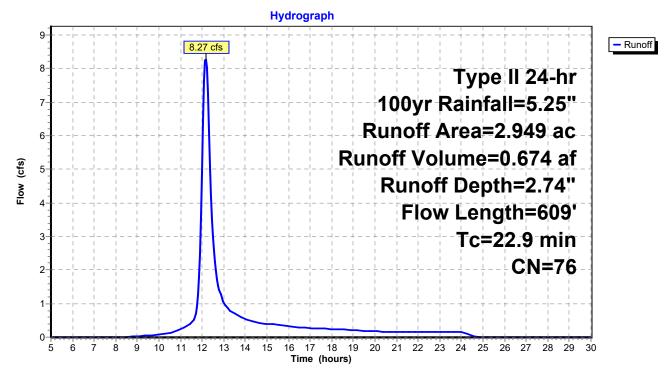
Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.449 ac,	0.00% Impervious, Inflow D	epth = 1.06" for 10yr event	
Inflow =	0.52 cfs @	12.13 hrs, Volume=	0.040 af	
Primary =	0.52 cfs @	12.13 hrs, Volume=	0.040 af, Atten= 0%, Lag= 0.0 n	nin

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Pond 2P: Discharge to South

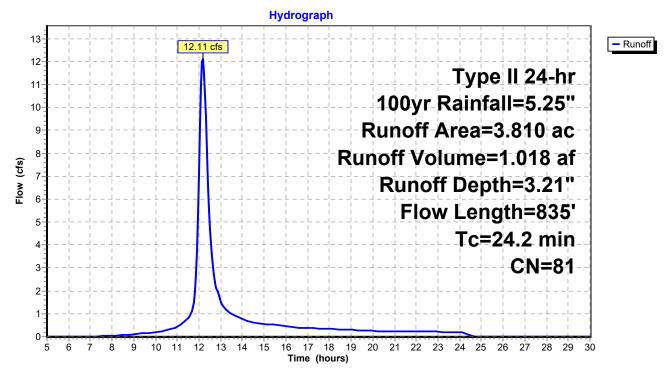

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff = 8.27 cfs @ 12.16 hrs, Volume= 0.674 af, Depth= 2.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac) C	N Desc	cription							
2.	2.042 77 Woods, Good, HSG D									
0.	0.907 73 Brush, Good, HSG D									
2.	.949 7	6 Weig	hted Aver	age						
2.	949	100.	00% Pervi	ous Area						
Тс	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.6	42	0.1607	0.12		Sheet Flow, AB					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
9.3	58	0.0870	0.10		Sheet Flow, BC					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
3.4	232	0.0518	1.14		Shallow Concentrated Flow, CD					
					Woodland Kv= 5.0 fps					
4.6	277	0.0405	1.01		Shallow Concentrated Flow, DE					
					Woodland Kv= 5.0 fps					
22.9	609	Total								

Subcatchment 1AS: Subcatchment Area 1A



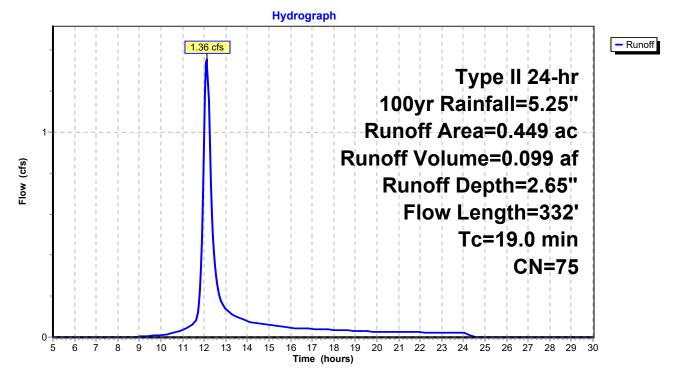
[47] Hint: Peak is 292% of capacity of segment #3

Runoff = 12.11 cfs @ 12.17 hrs, Volume= 1.018 af, Depth= 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac) C	N Dese	cription							
1.	880 7	7 Woo	ds, Good,	HSG D						
0.	429 9	8 Pave	ed parking,	HSG D						
1.	501 8	30 > 759	% Grass co	over, Good,	, HSG D					
3.	3.810 81 Weighted Average									
3.	381	88.7	4% Pervio	us Area						
0.	429	11.2	6% Imperv	vious Area						
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
14.7	100	0.0824	0.11		Sheet Flow, AB					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
9.0	572	0.0448	1.06		Shallow Concentrated Flow, BC					
					Woodland Kv= 5.0 fps					
0.5	163	0.0500	5.27	4.14						
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
					n= 0.025 Corrugated metal					
24.2	835	Total								

Subcatchment 1BS: Subcatchment Area 1B

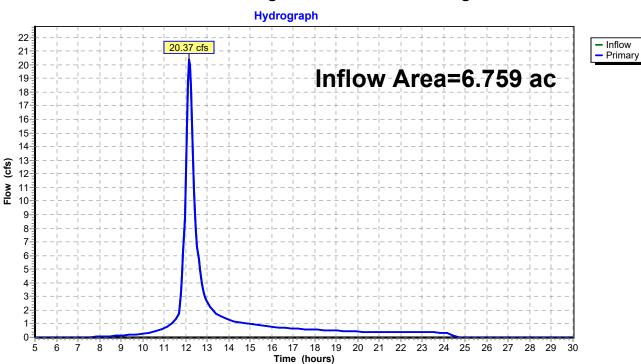

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff = 1.36 cfs @ 12.12 hrs, Volume= 0.099 af, Depth= 2.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac) C	N Dese	cription							
-			ds, Good,							
0.215 73 Brush, Good, HSG D										
0.	0.449 75 Weighted Average									
0.	449	100.	00% Pervi	ous Area						
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
15.0	100	0.0780	0.11		Sheet Flow, AB					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
4.0	232	0.0377	0.97		Shallow Concentrated Flow, BC					
					Woodland Kv= 5.0 fps					
19.0	332	Total								

Subcatchment 2S: Subcatchment Area 2

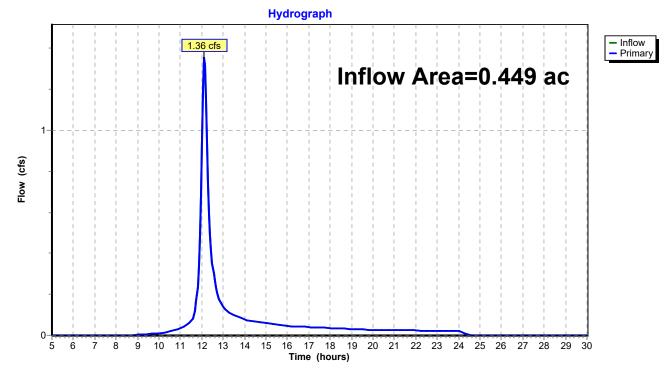


Summary for Pond 1P: Discharge to Olean Road Drainage Ditch

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	6.759 ac,	6.35% Impervious, Ir	nflow Depth = 3.00"	for 100yr event
Inflow	=	20.37 cfs @	12.17 hrs, Volume=	1.692 af	
Primary	=	20.37 cfs @	12.17 hrs, Volume=	1.692 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs


Pond 1P: Discharge to Olean Road Drainage Ditch

Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.449 ac,	0.00% Impervious, Inflow D	epth = 2.65" for 100yr event
Inflow =	1.36 cfs @	12.12 hrs, Volume=	0.099 af
Primary =	1.36 cfs @	12.12 hrs, Volume=	0.099 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Pond 2P: Discharge to South

EXISTING DRAINAGE ANALYSIS MAP DRAINAGE AREA IMPERVIOUS AREA TIME OF CONCENTRATION 160 Ft.

Proposed Drainage Analysis Prepared by C&S Engineers, Inc. HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

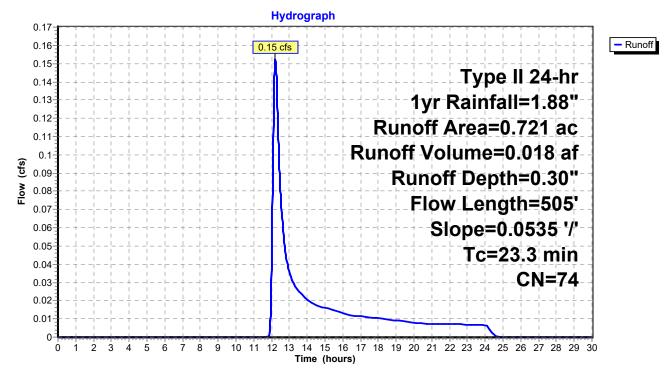
Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
 1	1yr	Type II 24-hr		Default	24.00	1	1.88	2
2	10yr	Type II 24-hr		Default	24.00	1	3.15	2
3	100yr	Type II 24-hr		Default	24.00	1	5.25	2

Rainfall Events Listing

Proposed Drainage Analysis Prepared by C&S Engineers, Inc. HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
 1	1BP	884.50	884.00	26.0	0.0192	0.013	18.0	0.0	0.0
2	1BP	884.50	884.50	21.0	0.0000	0.013	12.0	0.0	0.0
3	1CP	898.00	896.81	134.0	0.0089	0.013	12.0	0.0	0.0
4	1CP	898.00	898.00	120.0	0.0000	0.013	6.0	0.0	0.0
5	1DP	898.00	898.00	38.0	0.0000	0.013	6.0	0.0	0.0
6	1EP	893.50	885.00	109.0	0.0780	0.013	18.0	0.0	0.0
7	1EP	896.81	893.50	196.0	0.0169	0.013	18.0	0.0	0.0

Pipe Listing (selected nodes)

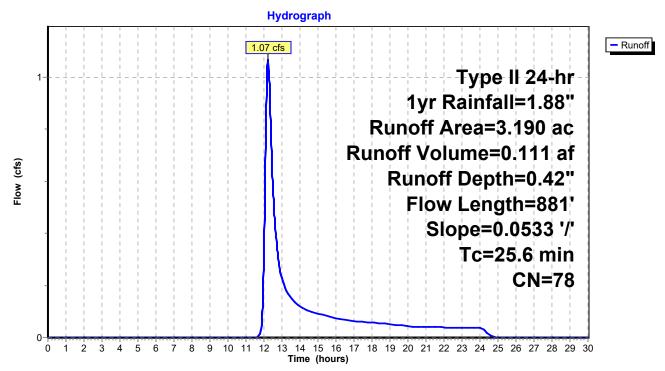

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff = 0.15 cfs @ 12.22 hrs, Volume= 0.018 af, Depth= 0.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

_	Area	(ac) C	N Desc	cription							
	0.173 77 Woods, Good, HSG D										
_	0.548 73 Brush, Good, HSG D										
	0.721 74 Weighted Average										
	0.721 100.00% Pervious Area										
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	17.5	100	0.0535	0.10		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 2.20"					
	5.8	405	0.0535	1.16		Shallow Concentrated Flow,					
						Woodland Kv= 5.0 fps					
	23.3	505	Total								

Subcatchment 1AS: Subcatchment Area 1A

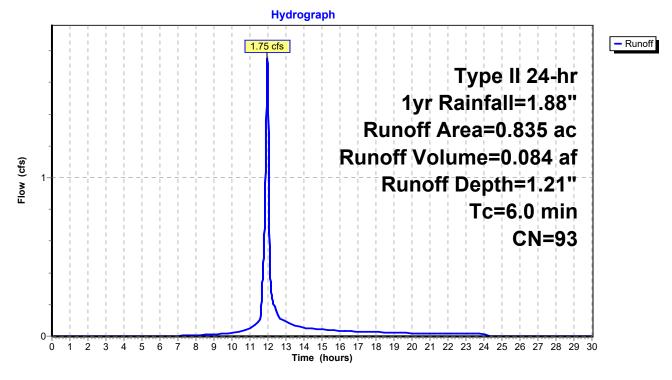

Summary for Subcatchment 1BS: Subcatchment Area 1B

Runoff = 1.07 cfs @ 12.23 hrs, Volume= 0.111 af, Depth= 0.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Area	(ac) (CN De	scription							
1.	534	77 Wo	ods, Good,	HSG D						
0.	352	73 Bri	ush, Good, I	HSG D						
1.	1.200 80 >75% Grass cover, Good, HSG D									
0.	0.104 98 Paved parking, HSG D									
3.	190	78 We	eighted Aver	rage						
3.	3.086 96.74% Pervious Area									
0.	104	3.2	3.26% Impervious Area							
Тс	Length	Slope	,	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)						
17.5	100	0.053	3 0.10		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
8.1	781	0.053	3 1.62		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
25.6	881	Total								

Subcatchment 1BS: Subcatchment Area 1B

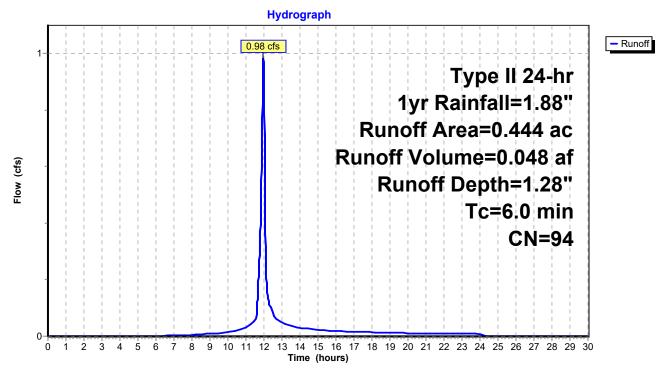

Summary for Subcatchment 1CS: Subcatchment Area 1C

Runoff = 1.75 cfs @ 11.97 hrs, Volume= 0.084 af, Depth= 1.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Area	(ac)	CN	Desc	ription						
C	.585									
C	0.250 80 >75% Grass cover, Good, HSG D									
C	0.835 93 Weighted Average									
C	0.250 29.94% Pervious Area									
C	0.585 70.06% Impervious Area									
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0						Direct Entry, AB				

Subcatchment 1CS: Subcatchment Area 1C

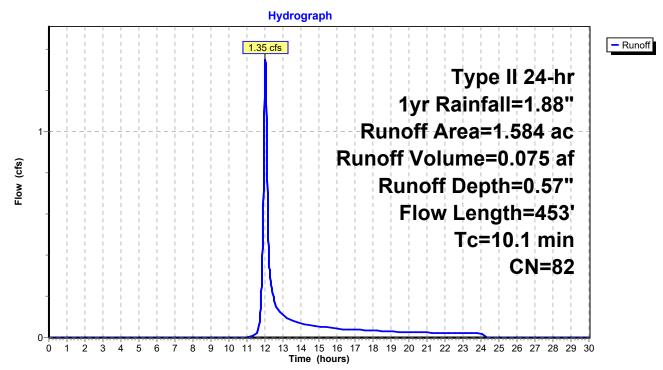

Summary for Subcatchment 1DS: Subcatchment Area 1D

Runoff = 0.98 cfs @ 11.97 hrs, Volume= 0.048 af, Depth= 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Area	(ac)	CN	I Description							
0	.357	98 Paved parking, HSG D								
0	0.087 80 >75% Grass cover, Good, HSG D									
0	0.444 94 Weighted Average									
0	0.087 19.59% Pervious Area									
0	0.357 80.41% Impervious Area									
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0						Direct Entry, Roof				

Subcatchment 1DS: Subcatchment Area 1D

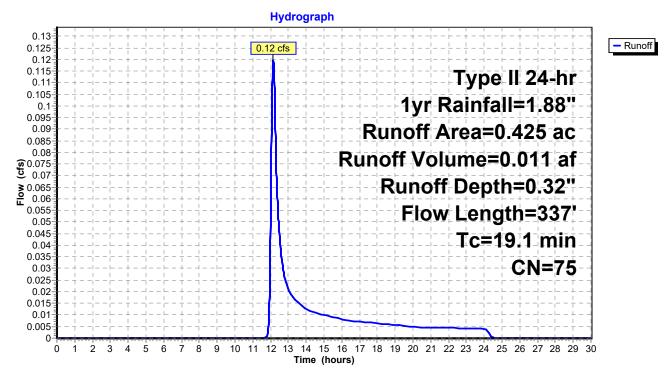

Summary for Subcatchment 1ES: Subcatchment Area 1E

Runoff = 1.35 cfs @ 12.03 hrs, Volume= 0.075 af, Depth= 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

A	Area	(ac) C	N Desc	cription					
	1.	395 8	30 >759	% Grass co	over, Good,	, HSG D			
0.189 98 Paved parking, HSG D									
	1.584 82 Weighted Average								
	1.395 88.07% Pervious Area								
	0.	189	11.9	3% Imperv	vious Area				
	та	l e e este	Clana	Valasity	Conositu	Description			
	Tc	Length	Slope	Velocity	Capacity	Description			
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.9	65	0.0310	1.25		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 2.20"			
	5.3	35	0.0460	0.11		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 2.20"			
	3.9	353	0.0460	1.50		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
1	0.1	453	Total						

Subcatchment 1ES: Subcatchment Area 1E

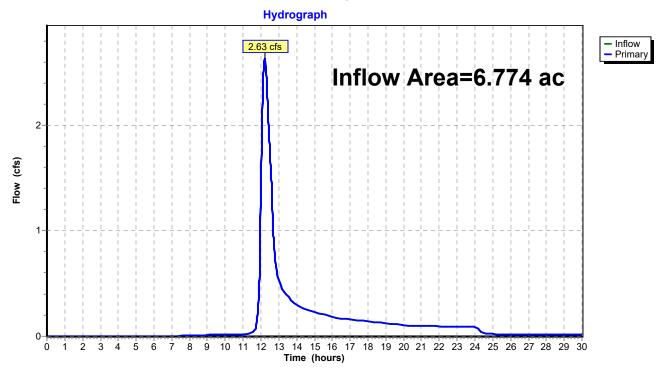

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff = 0.12 cfs @ 12.16 hrs, Volume= 0.011 af, Depth= 0.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1yr Rainfall=1.88"

Area	(ac) C	N Dese	cription							
-	0.220 77 Woods, Good, HSG D									
0	0.205 73 Brush, Good, HSG D									
-	0.425 75 Weighted Average 0.425 100.00% Pervious Area									
Ū	0.425 100.00 % Felvious Alea									
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
15.0	100	0.0780	0.11		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.20"					
4.1	237	0.0377	0.97		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
19.1	337	Total								

Subcatchment 2S: Subcatchment Area 2



Summary for Pond 1AP: Discharge to Olean Road

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area :	=	6.774 ac, 1	8.23% Imp	ervious,	Inflow De	epth >	0.55"	for 1yr	event
Inflow =	=	2.63 cfs @	12.21 hrs,	Volume	;=	0.309 a	af		
Primary =	=	2.63 cfs @	12.21 hrs,	Volume	;=	0.309 a	af, Att	en= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 1AP: Discharge to Olean Road

Summary for Pond 1BP: Detention Pond

[79] Warning: Submerged Pond 1EP Primary device # 1 OUTLET by 0.79'

Inflow Area =	2.863 ac, 39.50% Impervious, Inflow Dep	th > 0.76" for 1yr event
Inflow =	3.47 cfs @ 12.02 hrs, Volume= 0).180 af
Outflow =	1.43 cfs @ 12.16 hrs, Volume= 0).180 af, Atten= 59%, Lag= 8.0 min
Primary =	1.43 cfs @ 12.16 hrs, Volume= 0).180 af

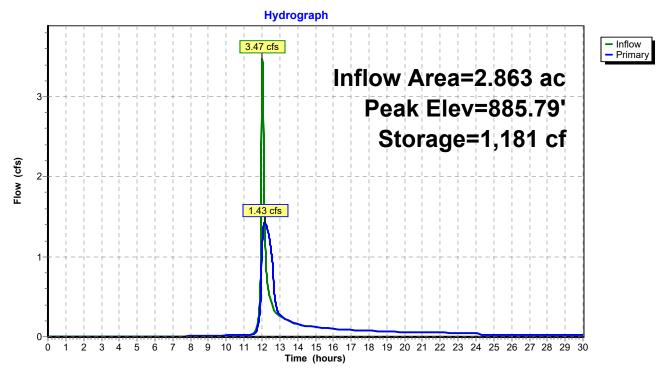
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 885.79' @ 12.16 hrs Surf.Area= 2,337 sf Storage= 1,181 cf

Plug-Flow detention time= 5.1 min calculated for 0.180 af (100% of inflow) Center-of-Mass det. time= 4.9 min (906.6 - 901.7)

Volume	Invert	Avail.Ste	orage	Storage Description					
#1	884.50'	12,6	606 cf	Custom Stage Data (Irregular)Listed below (Recalc)					
Elevatio (fee		urf.Area I (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
884.5	50	0	0.0	0	0	0			
885.0	00	592	119.0	99	99	1,127			
886.0	00	2,992	335.0	1,638	1,737	8,934			
887.0	00	5,687	455.0	4,268	6,005	16,489			
888.0	00	7,559	480.0	6,601	12,606	18,407			
Device Routing Invert Outlet Devices									
#1	Primary	884.50'							
				6.0' CPP, projecting					
				Inlet / Outlet Invert= 884.50' / 884.00' S= 0.0192 '/' Cc= 0.900					
	D · · · ·	004 501		.013 Corrugated PE,					
#2	Device 1	884.50'		7.4" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads					
#3	Device 2	884.50'		" Round 12" Inlet P		- 0 700			
				1.0' CPP, mitered to	,				
				/ Outlet Invert= 884.5					
#1	Davias 1	996 40		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)					
#4	Device 1	886.40'	4.0 [*]	long Sharp-Crested	Rectangular well	2 End Contraction(S)			
Drimon	OutElow M	lov-1 42 of	@ 10 1	6 bro LIM-005 70'	(Free Discharge)				

Primary OutFlow Max=1.43 cfs @ 12.16 hrs HW=885.79' (Free Discharge)

1=18" Outlet Pipe (Passes 1.43 cfs of 4.94 cfs potential flow)


2=Orifice/Grate (Orifice Controls 1.43 cfs @ 4.77 fps) **3=12" Inlet Pipe** (Passes 1.43 cfs of 2.35 cfs potential flow)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Drainage Analysis

Prepared by C&S Engineers, Inc. HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

Pond 1BP: Detention Pond

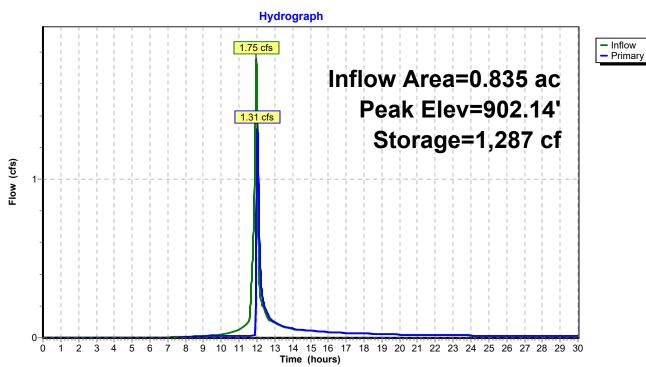
Summary for Pond 1CP: East Bioretention Basin

Inflow Area =	0.835 ac, 70.06% Impervious, Inflow D	epth = 1.21" for 1yr event
Inflow =	1.75 cfs @ 11.97 hrs, Volume=	0.084 af
Outflow =	1.31 cfs @12.03 hrs, Volume=	0.067 af, Atten= 25%, Lag= 3.4 min
Primary =	1.31 cfs @ 12.03 hrs, Volume=	0.067 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 902.14' @ 12.03 hrs Surf.Area= 2,412 sf Storage= 1,287 cf

Plug-Flow detention time= 197.8 min calculated for 0.067 af (80% of inflow) Center-of-Mass det. time= 117.2 min (926.6 - 809.4)

Volume	Inve	ert Avail.S	Storage	Storage Description	n				
#1	901.5	0' 4	1,064 cf	Custom Stage Da	Custom Stage Data (Irregular)Listed below (Recalc)				
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
901.5 902.0 903.0	00	1,722 2,191 4,082	271.0 290.0 370.0	0 976 3,088	0 976 4,064	1,722 2,582 6,796			
Device	Routing	Inve	ert Outle	et Devices					
#1	Primary	898.0		" Round Culvert					
#2	Device 1	898.0	Inlet n= 0 0' 6.0'' L= 1 Inlet	L= 134.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 898.00' / 896.81' S= 0.0089 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 6.0" Round Underdrain L= 120.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 898.00' / 898.00' S= 0.0000 '/' Cc= 0.900					
#3	Device 2	901.5	0' 0.25 Cond	n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf 0.250 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 800.00'					
#4	Device 1	902.0	-	" x 24.0" Horiz. Or ted to weir flow at lo		600			


Primary OutFlow Max=1.31 cfs @ 12.03 hrs HW=902.13' (Free Discharge)

-1=Culvert (Passes 1.31 cfs of 5.30 cfs potential flow)

-2=Underdrain (Passes 0.01 cfs of 0.89 cfs potential flow)

3=Exfiltration (Controls 0.01 cfs)

-4=Orifice/Grate (Weir Controls 1.30 cfs @ 1.20 fps)

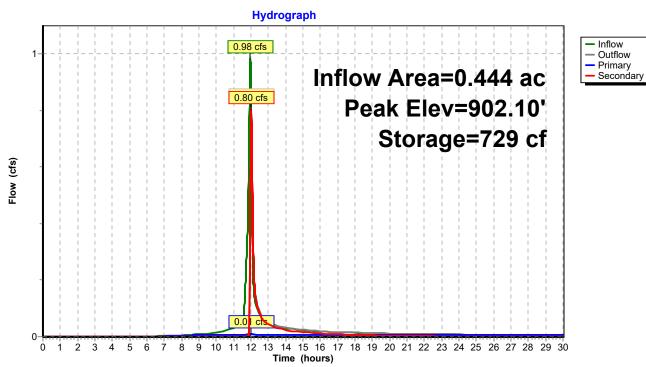
Pond 1CP: East Bioretention Basin

Summary for Pond 1DP: North Bioretention Basin

Inflow Area =	0.444 ac, 80.41% Impervious, Inflow De	epth = 1.28" for 1yr event
Inflow =	0.98 cfs @ 11.97 hrs, Volume=	0.048 af
Outflow =	0.81 cfs @ 12.02 hrs, Volume=	0.037 af, Atten= 17%, Lag= 2.8 min
Primary =	0.01 cfs @ 12.02 hrs, Volume=	0.014 af
Secondary =	0.80 cfs @ 12.02 hrs, Volume=	0.024 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 902.10' @ 12.02 hrs Surf.Area= 1,360 sf Storage= 729 cf

Plug-Flow detention time= 208.4 min calculated for 0.037 af (79% of inflow) Center-of-Mass det. time= 124.7 min (927.7 - 802.9)


Volume	Inve	rt Ava	il.Storage	Storage Description					
#1	901.50)'	2,159 cf	Custom Stage Da	Custom Stage Data (Irregular)Listed below (Recalc)				
Elevatio (fee 901.5 902.0	et) 50	Surf.Area (sq-ft) 1,080 1,314	Perim. (feet) 152.0 161.0	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	Wet.Area <u>(sq-ft)</u> 1,080 1,317			
902.0 903.0	-	1,814	180.0	598 1,561	598 2,159	1,860			
Device #1	Routing Primary	,	vert Outle .00' 6.0''	Outlet Devices 6.0" Round Culvert					
		Inlet n= 0	L= 38.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 898.00' / 898.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf						
#2	#2 Device 1 901.50'			0.250 in/hr Exfiltration over Surface area					
#3	Secondar	y 902	.00' 24.0	onductivity to Groundwater Elevation = 800.00' 4.0" x 24.0" Horiz. Orifice/Grate C= 0.600 imited to weir flow at low heads					

Primary OutFlow Max=0.01 cfs @ 12.02 hrs HW=902.10' (Free Discharge)

-**1=Culvert** (Passes 0.01 cfs of 1.35 cfs potential flow)

2=Exfiltration (Controls 0.01 cfs)

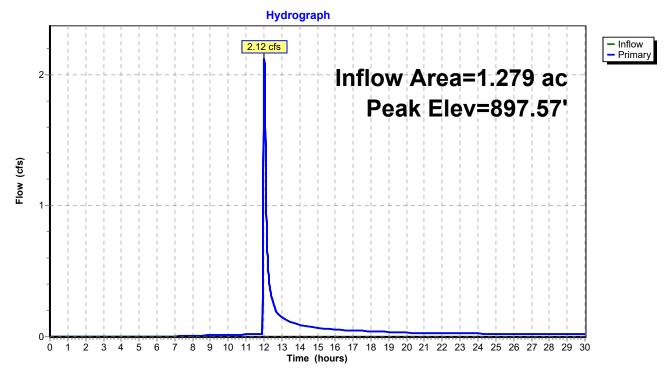
Secondary OutFlow Max=0.80 cfs @ 12.02 hrs HW=902.10' (Free Discharge) -3=Orifice/Grate (Weir Controls 0.80 cfs @ 1.02 fps)

Pond 1DP: North Bioretention Basin

Summary for Pond 1EP: Conveyance Pipe

[79] Warning: Submerged Pond 1CP Primary device # 1 OUTLET by 0.76'

Inflow Area =	1.279 ac, 73.65% Impervious, Inflow I	Depth > 0.98" for 1yr event
Inflow =	2.12 cfs @ 12.02 hrs, Volume=	0.105 af
Outflow =	2.12 cfs @ 12.02 hrs, Volume=	0.105 af, Atten= 0%, Lag= 0.0 min
Primary =	2.12 cfs @ 12.02 hrs, Volume=	0.105 af

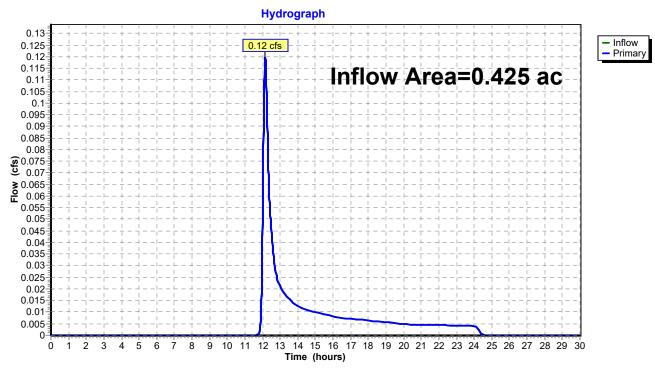

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 897.57' @ 12.02 hrs Flood Elev= 902.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	893.50'	18.0" Round Culvert
			L= 109.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 893.50' / 885.00' S= 0.0780 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	896.81'	18.0" Round Culvert
			L= 196.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 896.81' / 893.50' S= 0.0169 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.11 cfs @ 12.02 hrs HW=897.57' (Free Discharge) **1=Culvert** (Passes 2.11 cfs of 12.24 cfs potential flow)

1-2=Culvert (Inlet Controls 2.11 cfs @ 2.34 fps)

Pond 1EP: Conveyance Pipe



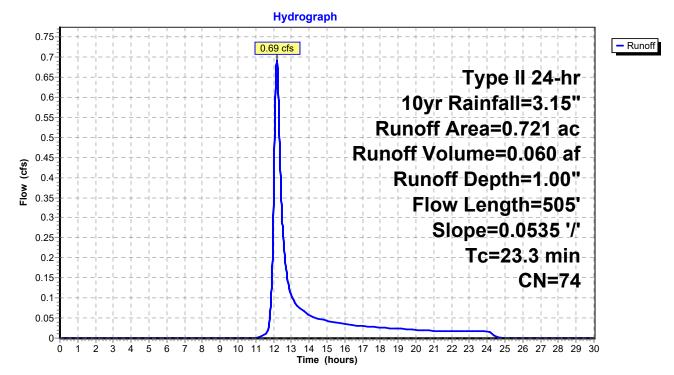
Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	0.425 ac,	0.00% Impervious,	Inflow Depth = 0.32'	' for 1yr event
Inflow	=	0.12 cfs @	12.16 hrs, Volume	= 0.011 af	
Primary	=	0.12 cfs @	12.16 hrs, Volume	= 0.011 af, A	tten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 2P: Discharge to South

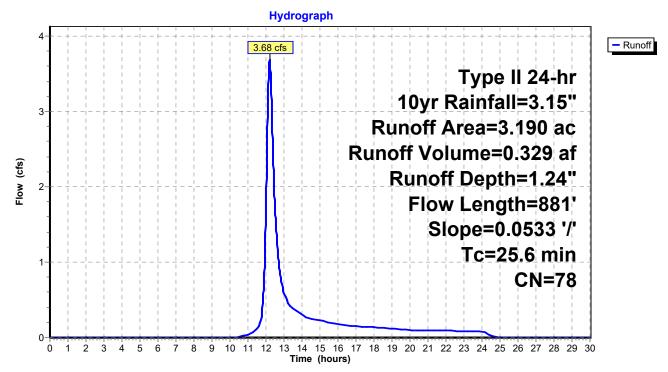

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff = 0.69 cfs @ 12.19 hrs, Volume= 0.060 af, Depth= 1.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Area	(ac) C	N Dese	cription					
0.	.173 7							
0.548 73 Brush, Good, HSG D								
0.	0.721 74 Weighted Average							
0.	.721	100.	00% Pervi	ous Area				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
17.5	100	0.0535	0.10		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 2.20"			
5.8	405	0.0535	1.16		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
23.3	505	Total						

Subcatchment 1AS: Subcatchment Area 1A

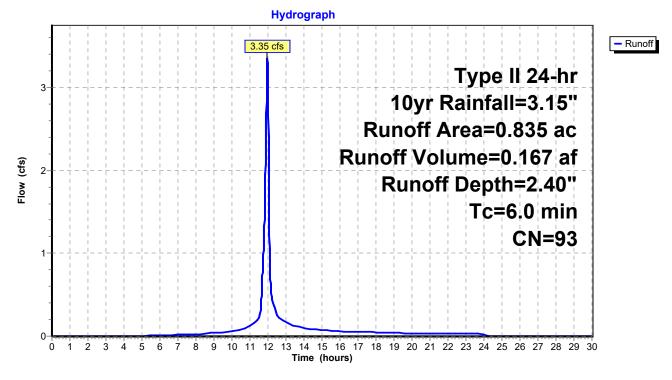

Summary for Subcatchment 1BS: Subcatchment Area 1B

Runoff = 3.68 cfs @ 12.20 hrs, Volume= 0.329 af, Depth= 1.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

	Area	(ac)	CN	Desc	ription						
	1.	534	77	Woo	loods, Good, HSG D						
	0.	352	73	Brus	rush, Good, HSG D						
	1.:	200	80	>75%	75% Grass cover, Good, HSG D						
	0.	104	98	Pave	d parking,	HSG D					
	3.	190	78	Weig	hted Aver	age					
	3.	086		96.74	4% Pervio	us Area					
	0.	104		3.269	% Impervio	ous Area					
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description				
_	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)					
	17.5	10	0.0	0533	0.10		Sheet Flow,				
							Woods: Light underbrush n= 0.400 P2= 2.20"				
	8.1	78	1 0.	0533	1.62		Shallow Concentrated Flow,				
							Short Grass Pasture Kv= 7.0 fps				
	25.6	88	1 To	otal							

Subcatchment 1BS: Subcatchment Area 1B

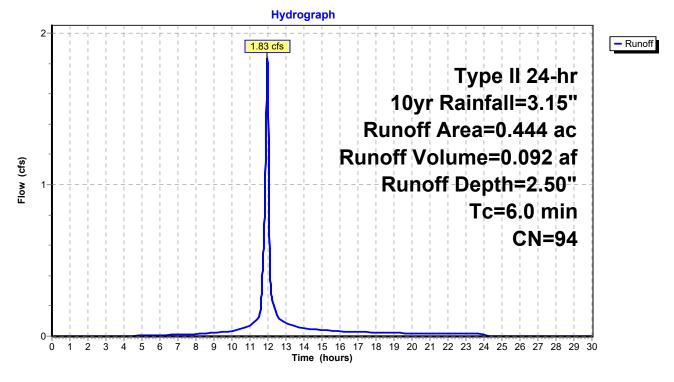

Summary for Subcatchment 1CS: Subcatchment Area 1C

Runoff = 3.35 cfs @ 11.97 hrs, Volume= 0.167 af, Depth= 2.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Area	(ac)	CN	Desc	ription			
C	.585	98	Pave	d parking,	HSG D		
C	.250	80	>75%	6 Grass co	over, Good,	HSG D	
C	0.835 93 Weighted Average						
C	.250		29.94	1% Pervio	us Area		
C	.585		70.06	3% Imperv	rious Area		
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0						Direct Entry, AB	

Subcatchment 1CS: Subcatchment Area 1C

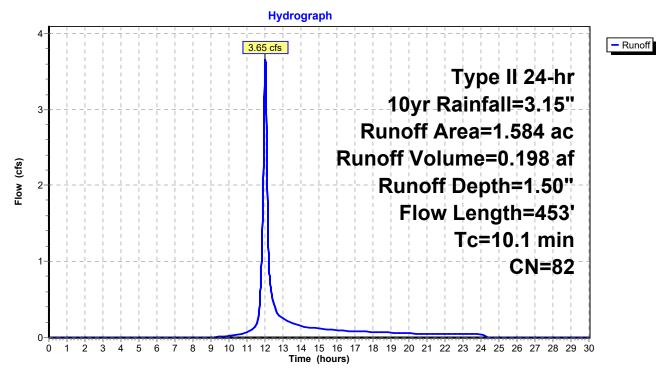

Summary for Subcatchment 1DS: Subcatchment Area 1D

Runoff = 1.83 cfs @ 11.97 hrs, Volume= 0.092 af, Depth= 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Are	ea (ac)	CN	Desc	Description						
	0.357	98	Pave	ed parking,	HSG D					
	0.087	80	>75%	6 Grass co	over, Good	, HSG D				
	0.444 94 Weighted Average									
	0.087		19.5	9% Pervio	us Area					
	0.357		80.4	1% Imperv	vious Area					
-					0	Description				
	c Len	•	Slope	Velocity	Capacity	Description				
(mii	<u>ו) (fe</u>	et)	(ft/ft)	(ft/sec)	(cfs)					
6	0					Direct Entry, Roof				
						-				

Subcatchment 1DS: Subcatchment Area 1D

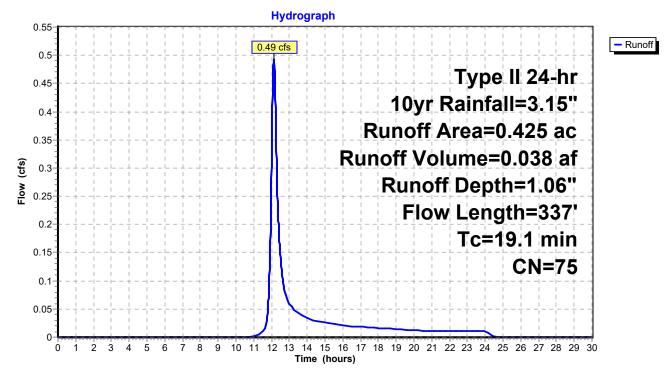

Summary for Subcatchment 1ES: Subcatchment Area 1E

Runoff = 3.65 cfs @ 12.02 hrs, Volume= 0.198 af, Depth= 1.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Area	(ac) C	N Desc	cription				
1.	.395 8	30 >759	% Grass co	over, Good,	, HSG D		
0.	0.189 98 Paved parking, HSG D						
1.	1.584 82 Weighted Average						
1.	1.395 88.07% Pervious Area						
0.	189	11.9	3% Imperv	vious Area			
-		<u></u>		.			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
0.9	65	0.0310	1.25		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 2.20"		
5.3	35	0.0460	0.11		Sheet Flow,		
					Grass: Dense n= 0.240 P2= 2.20"		
3.9	353	0.0460	1.50		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
10.1	453	Total					

Subcatchment 1ES: Subcatchment Area 1E

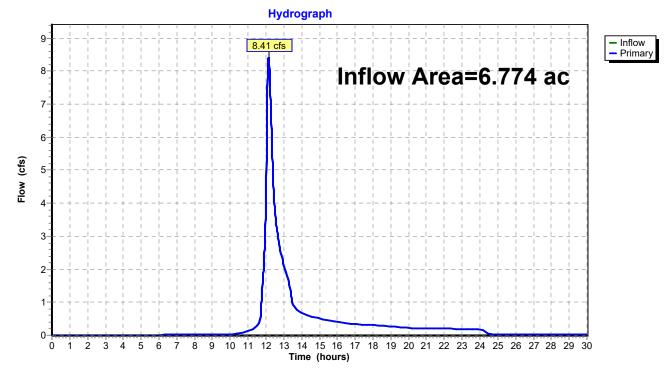

Page 24

0.49 cfs @ 12.12 hrs, Volume= 0.038 af, Depth= 1.06" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10yr Rainfall=3.15"

Area	(ac) C	N Dese	cription						
	0.220 77 Woods, Good, HSG D								
0.	0.205 73 Brush, Good, HSG D								
-	0.425 75 Weighted Average 0.425 100.00% Pervious Area								
0.	.425	100.	00% Pervi	ous Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
15.0	100	0.0780	0.11		Sheet Flow,				
4.1	237	0.0377	0.97		Woods: Light underbrush n= 0.400 P2= 2.20" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
19.1	337	Total							

Subcatchment 2S: Subcatchment Area 2



Summary for Pond 1AP: Discharge to Olean Road

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	6.774 ac, 18.23% Impervious, Inflow D	epth > 1.45" for 10yr event
Inflow =	8.41 cfs @ 12.14 hrs, Volume=	0.819 af
Primary =	8.41 cfs @ 12.14 hrs, Volume=	0.819 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 1AP: Discharge to Olean Road

Summary for Pond 1BP: Detention Pond

[79] Warning: Submerged Pond 1EP Primary device # 1 OUTLET by 1.73'

Inflow Area =	2.863 ac, 39.50% Impervious, Inflow De	epth > 1.80" for 10yr event
Inflow =	8.42 cfs @ 12.00 hrs, Volume=	0.430 af
Outflow =	4.40 cfs @ 12.11 hrs, Volume=	0.430 af, Atten= 48%, Lag= 6.5 min
Primary =	4.40 cfs @ 12.11 hrs, Volume=	0.430 af

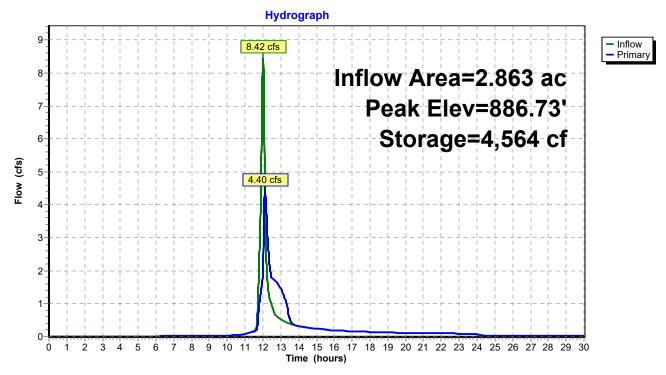
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 886.73' @ 12.11 hrs Surf.Area= 4,865 sf Storage= 4,564 cf

Plug-Flow detention time= 12.3 min calculated for 0.430 af (100% of inflow) Center-of-Mass det. time= 12.2 min (857.8 - 845.6)

Volume	Invert	Avail.St	orage	Storage Description				
#1 884.50' 12,600		606 cf	cf Custom Stage Data (Irregular)Listed below (Recalc)					
Elevation Surf.Area (feet) (sq-ft)		Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
884.5	1	0	0.0	0	0	0		
885.0		592	119.0	99	99	1,127		
886.0		2,992	335.0	1,638	1,737	8,934		
887.0	0	5,687	455.0	4,268	6,005	16,489		
888.0	0	7,559	480.0	6,601	12,606	18,407		
Device	Routing	Inver	t Outle	et Devices				
#1	Primary	884.50		18.0" Round 18" Outlet Pipe				
				L= 26.0' CPP, projecting, no headwall, Ke= 0.900				
				Inlet / Outlet Invert= 884.50' / 884.00' S= 0.0192 '/' Cc= 0.900				
40	Davida a 1	004 50		n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf				
#2	Device 1	884.50		7.4" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads				
#3 Device 2 884.50'			12.0" Round 12" Inlet Pipe L= 21.0' CPP, mitered to conform to fill, Ke= 0.700					
				/ Outlet Invert= 884.	-			
				.013 Corrugated PE				
#4	Device 1	886.40				2 End Contraction(s)		
	201100	000.10						
Drimary	Primary OutElow Max $= 4.30$ of $= 6.12 \cdot 11$ hrs $= H/M = 886 \cdot 73'$ (Free Discharge)							

Primary OutFlow Max=4.39 cfs @ 12.11 hrs HW=886.73' (Free Discharge)

1=18" Outlet Pipe (Passes 4.39 cfs of 8.16 cfs potential flow)


2=Orifice/Grate (Orifice Controls 1.99 cfs @ 6.67 fps) **3=12" Inlet Pipe** (Passes 1.99 cfs of 4.38 cfs potential flow)

-4=Sharp-Crested Rectangular Weir (Weir Controls 2.40 cfs @ 1.87 fps)

Proposed Drainage Analysis

Prepared by C&S Engineers, Inc. HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

Pond 1BP: Detention Pond

Summary for Pond 1CP: East Bioretention Basin

Inflow Area =	0.835 ac, 70.06	% Impervious, Inflow Depth =	2.40" for 10yr event
Inflow =	3.35 cfs @ 11.9	7 hrs, Volume= 0.167	7 af
Outflow =	3.11 cfs @ 12.0	0 hrs, Volume= 0.150) af, Atten= 7%, Lag= 1.7 min
Primary =	3.11 cfs @ 12.0	0 hrs, Volume= 0.150) af

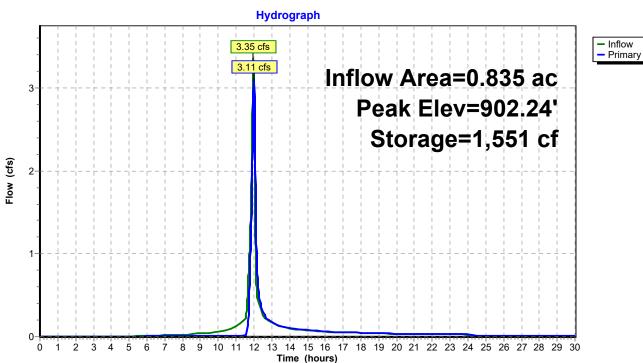
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 902.24' @ 12.00 hrs Surf.Area= 2,593 sf Storage= 1,551 cf

Plug-Flow detention time= 113.7 min calculated for 0.150 af (90% of inflow) Center-of-Mass det. time= 62.8 min (852.8 - 790.0)

Volume	Inve	ert Avail.	Avail.Storage Storage Description		n		
#1 901.50' 4,064 cf		4,064 cf	Custom Stage Data (Irregular)Listed below (Recalc)				
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
901.5 902.0 903.0	00	1,722 2,191 4,082	271.0 290.0 370.0	0 976 3,088	0 976 4,064	1,722 2,582 6,796	
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	898.0		" Round Culvert			
#2	Device 1	898.0	Inlet n= 0 00' 6.0'' L= 1 Inlet	L= 120.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 898.00' / 898.00' S= 0.0000 '/' Cc= 0.900			
#3	Device 2	901.5	50' 0.25 Cond	Conductivity to Groundwater Elevation = 800.00'			
#4 Device 1 902.00' 2			-	" x 24.0" Horiz. Or ted to weir flow at lo		000	

Primary OutFlow Max=3.10 cfs @ 12.00 hrs HW=902.24' (Free Discharge)

-**1=Culvert** (Passes 3.10 cfs of 5.37 cfs potential flow)


-2=Underdrain (Passes 0.02 cfs of 0.90 cfs potential flow)

3=Exfiltration (Controls 0.02 cfs)

-4=Orifice/Grate (Weir Controls 3.09 cfs @ 1.60 fps)

Proposed Drainage Analysis Prepared by C&S Engineers, Inc.

Prepared by C&S Engineers, Inc. HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

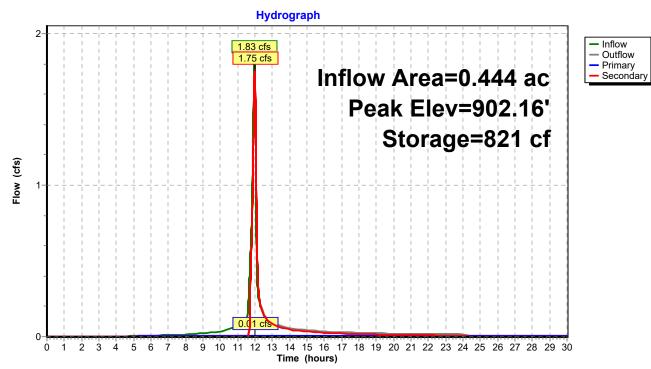
Pond 1CP: East Bioretention Basin

Summary for Pond 1DP: North Bioretention Basin

Inflow Area =	0.444 ac, 80.41% Impervious, Inflow D	epth = 2.50" for 10yr event
Inflow =	1.83 cfs @ 11.97 hrs, Volume=	0.092 af
Outflow =	1.76 cfs @_ 11.99 hrs, Volume=	0.082 af, Atten= 4%, Lag= 1.2 min
Primary =	0.01 cfs @ 11.99 hrs, Volume=	0.015 af
Secondary =	1.75 cfs $\overline{@}$ 11.99 hrs, Volume=	0.067 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 902.16' @ 11.99 hrs Surf.Area= 1,392 sf Storage= 821 cf

Plug-Flow detention time= 122.3 min calculated for 0.082 af (89% of inflow) Center-of-Mass det. time= 67.4 min (851.7 - 784.4)


Volume	Inve	rt Ava	il.Storage	Storage Descriptio	on		
#1	#1 901.50' 2,159		2,159 cf	f Custom Stage Data (Irregular)Listed below (Recalc)			
(feet) (sq-ft) (Perim. (feet) 152.0	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet)	Wet.Area <u>(sq-ft)</u> 1,080		
901.5 902.0	-	1,080 1,314	161.0	598	0 598	1,317	
903.0		1,822	180.0	1,561	2,159	1,860	
Device Routing Invert		vert Outle	et Devices				
#1 Primary 898.00'		L= 3 Inlet	6.0" Round Culvert L= 38.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 898.00' / 898.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf				
#2 Device 1		901.50' 0.2		0.250 in/hr Exfiltration over Surface area			
#3	Secondar			Conductivity to Groundwater Elevation = 800.00' (4.0" x 24.0" Horiz. Orifice/Grate C= 0.600 imited to weir flow at low heads			

Primary OutFlow Max=0.01 cfs @ 11.99 hrs HW=902.16' (Free Discharge)

-**1=Culvert** (Passes 0.01 cfs of 1.36 cfs potential flow)

2=Exfiltration (Controls 0.01 cfs)

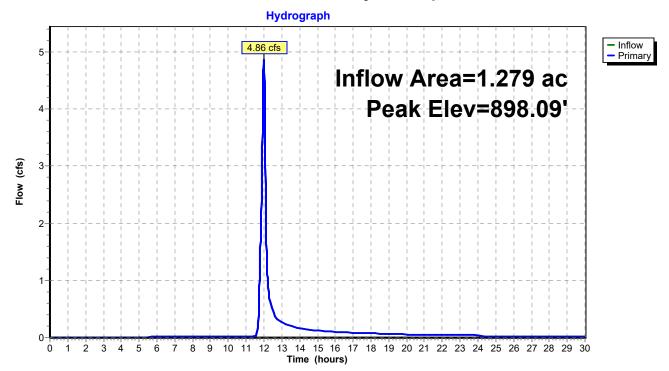
Secondary OutFlow Max=1.75 cfs @ 11.99 hrs HW=902.16' (Free Discharge) -3=Orifice/Grate (Weir Controls 1.75 cfs @ 1.33 fps)

Pond 1DP: North Bioretention Basin

Summary for Pond 1EP: Conveyance Pipe

[79] Warning: Submerged Pond 1CP Primary device # 1 INLET by 0.08'[79] Warning: Submerged Pond 1DP Primary device # 1 by 0.08'

Inflow Area	=	1.279 ac, 73.65% Impervious, Inflow Depth > 2.18" for 10yr event	
Inflow =	=	4.86 cfs @ 11.99 hrs, Volume= 0.232 af	
Outflow =	=	4.86 cfs @11.99 hrs, Volume=0.232 af, Atten= 0%, Lag= 0.0) min
Primary =	=	4.86 cfs @ 11.99 hrs, Volume= 0.232 af	

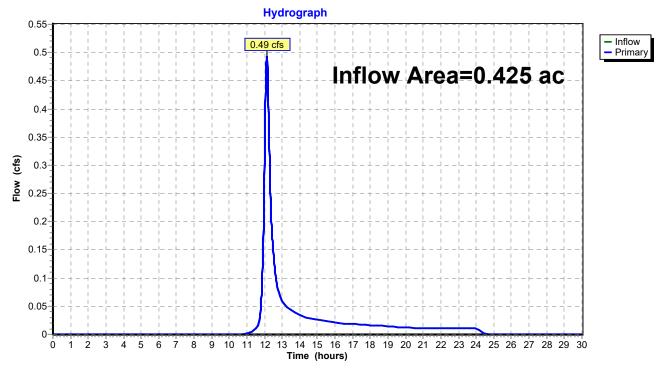

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 898.09' @ 11.99 hrs Flood Elev= 902.50'

Device	Routing	Invert	vert Outlet Devices	
#1	Primary	893.50'	18.0" Round Culvert	
	2		L= 109.0' CPP, projecting, no headwall, Ke= 0.900	
			Inlet / Outlet Invert= 893.50' / 885.00' S= 0.0780 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf	
#2	Device 1	896.81'	18.0" Round Culvert	
			L= 196.0' CPP, projecting, no headwall, Ke= 0.900	
			Inlet / Outlet Invert= 896.81' / 893.50' S= 0.0169 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf	

Primary OutFlow Max=4.85 cfs @ 11.99 hrs HW=898.08' (Free Discharge)

-1=Culvert (Passes 4.85 cfs of 13.15 cfs potential flow)

2=Culvert (Inlet Controls 4.85 cfs @ 3.03 fps)


Pond 1EP: Conveyance Pipe

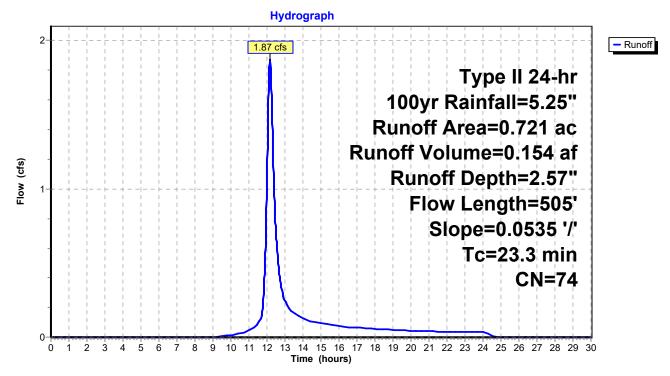
Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	e 0.425 ac,	0.00% Impervious, Inflow	Depth = 1.06"	for 10yr event
Inflow =	0.49 cfs @	12.12 hrs, Volume=	0.038 af	-
Primary =	0.49 cfs @	12.12 hrs, Volume=	0.038 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 2P: Discharge to South

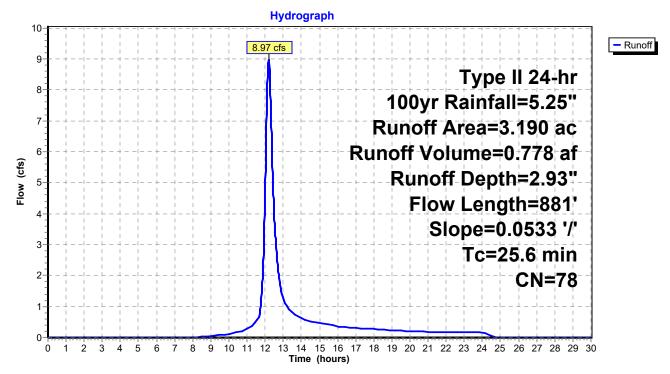

Summary for Subcatchment 1AS: Subcatchment Area 1A

Runoff = 1.87 cfs @ 12.17 hrs, Volume= 0.154 af, Depth= 2.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

_	Area	(ac) C	N Dese	cription		
				ds, Good,		
_	0.	<u>548 7</u>	73 Brus	h, Good, H	ISG D	
	0.	721 7	74 Weig	ghted Aver	age	
	0.	721	100.	00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.5	100	0.0535	0.10		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.20"
	5.8	405	0.0535	1.16		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	23.3	505	Total			

Subcatchment 1AS: Subcatchment Area 1A

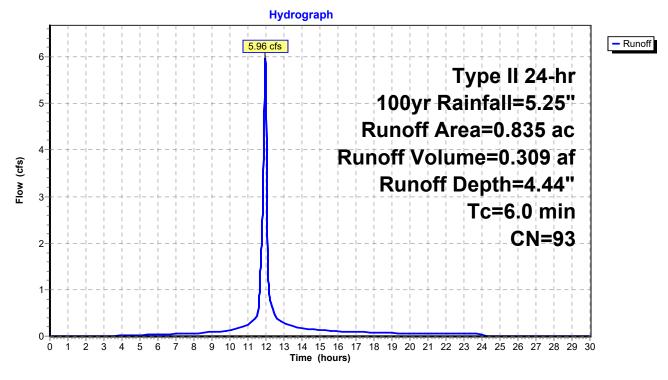

Summary for Subcatchment 1BS: Subcatchment Area 1B

Runoff = 8.97 cfs @ 12.20 hrs, Volume= 0.778 af, Depth= 2.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

	Area	(ac)	CN	Desc	ription					
	1.	534	77	Woo	ds, Good,	HSG D				
	0.352 73 Brush, Good, HSG D									
	1.200 80 >75% Grass cover, Good, HSG D									
0.104 98 Paved parking, HSG D										
	3.190 78 Weighted Average									
	3.	086		96.74	4% Pervio	us Area				
	0.	104		3.269	% Impervio	ous Area				
	Тс	Length	า 8	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	17.5	100) 0.	0533	0.10		Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 2.20"			
	8.1	78′	0.	0533	1.62		Shallow Concentrated Flow,			
							Short Grass Pasture Kv= 7.0 fps			
	25.6	88	To	otal						

Subcatchment 1BS: Subcatchment Area 1B

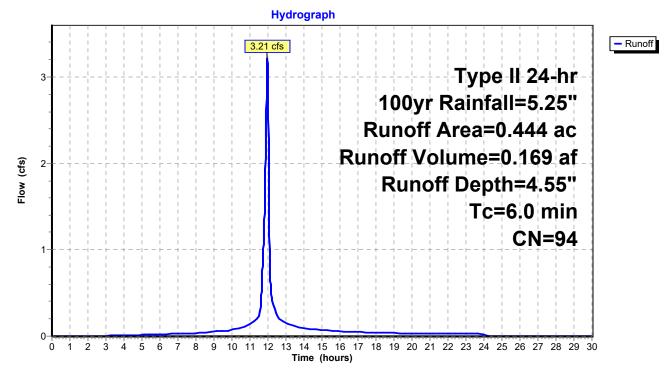

Summary for Subcatchment 1CS: Subcatchment Area 1C

Runoff = 5.96 cfs @ 11.97 hrs, Volume= 0.309 af, Depth= 4.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac)	CN	Desc	ription		
0.	.585	98	Pave	ed parking,	HSG D	
0.	.250	80	>75%	, HSG D		
0.	.835	93	Weig	hted Aver	age	
0.	.250		29.9	4% Pervio	us Area	
0.	.585		70.0	6% Imperv	rious Area	
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry, AB

Subcatchment 1CS: Subcatchment Area 1C

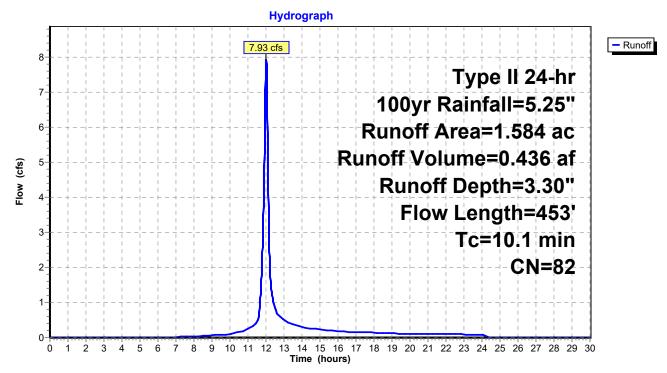

Summary for Subcatchment 1DS: Subcatchment Area 1D

Runoff = 3.21 cfs @ 11.97 hrs, Volume= 0.169 af, Depth= 4.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac)	CN	Desc	ription				
0	.357	98	Pave	d parking,	HSG D			
0.087 80 >75% Grass cover, Good, HSG D								
0.444 94 Weighted Average								
0	.087		19.59	9% Pervio	us Area			
0	.357		80.4	1% Imperv	vious Area			
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0						Direct Entry, Roof		

Subcatchment 1DS: Subcatchment Area 1D

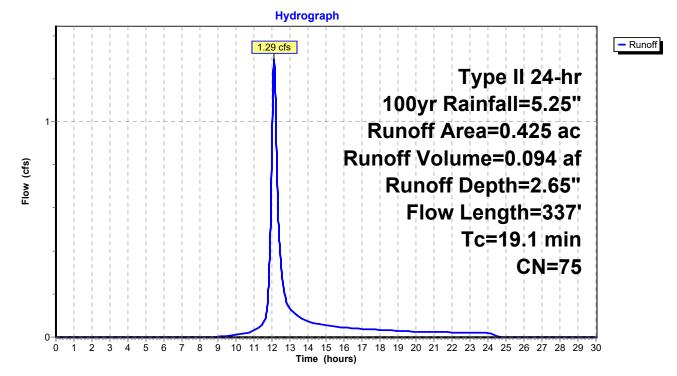

Summary for Subcatchment 1ES: Subcatchment Area 1E

Runoff = 7.93 cfs @ 12.02 hrs, Volume= 0.436 af, Depth= 3.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac) C	N Dese	cription							
1.395 80 >75% Grass cover, Good, HSG D										
0.189 98 Paved parking, HSG D 1.584 82 Weighted Average 1.395 88.07% Pervious Area 0.189 11.93% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 0.9 65 0.0310 1.25 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 5.3 35 0.0460 0.11 Sheet Flow, Grass: Dense n= 0.240 P2= 2.20"										
5 5										
1	.395									
0	.189	11.9	3% Imperv	vious Area						
-		01		0						
IC	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
0.9	65	0.0310	1.25		Sheet Flow,					
					Smooth surfaces n= 0.011 P2= 2.20"					
5.3	35	0.0460	0.11		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 2.20"					
3.9	353	0.0460	1.50		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
10.1	453	Total								

Subcatchment 1ES: Subcatchment Area 1E

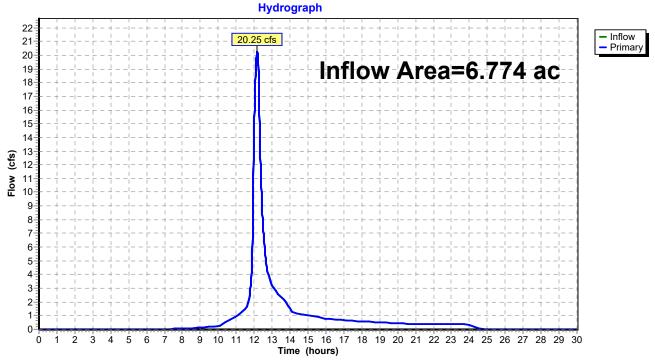

Summary for Subcatchment 2S: Subcatchment Area 2

Runoff = 1.29 cfs @ 12.12 hrs, Volume= 0.094 af, Depth= 2.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100yr Rainfall=5.25"

Area	(ac) C	N Dese	cription					
-			ds, Good,					
0.	.205 7	73 Brus	h, Good, H	ISG D				
0.425 75 Weighted Average								
0.	425	100.	00% Pervi	ous Area				
Tc	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
15.0	100	0.0780	0.11		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 2.20"			
4.1	237	0.0377	0.97		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
19.1	337	Total						

Subcatchment 2S: Subcatchment Area 2


Summary for Pond 1AP: Discharge to Olean Road

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	=	6.774 ac, 1	8.23% Imp	ervious,	Inflow Depth	> 3.22"	for 100yr event
Inflow =		20.25 cfs @	12.17 hrs,	Volume	= 1.8	19 af	
Primary =	:	20.25 cfs @	12.17 hrs,	Volume	= 1.8	19 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Summary for Pond 1BP: Detention Pond

[79] Warning: Submerged Pond 1EP Primary device # 1 OUTLET by 2.36'

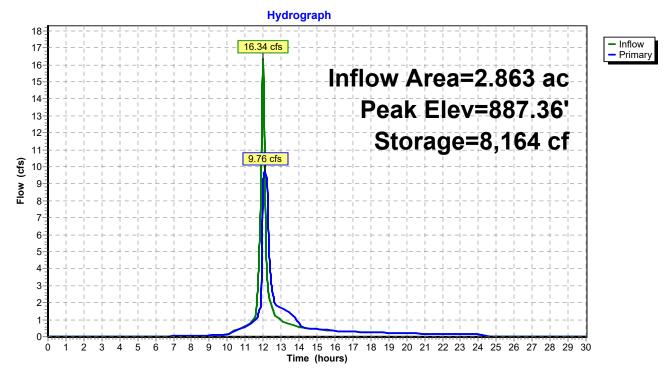
Inflow Area =	2.863 ac, 39.50% Impervious, Inflow D	epth > 3.72" for 100yr event
Inflow =	16.34 cfs @ 12.01 hrs, Volume=	0.887 af
Outflow =	9.76 cfs @ 12.10 hrs, Volume=	0.887 af, Atten= 40%, Lag= 5.5 min
Primary =	9.76 cfs @ 12.10 hrs, Volume=	0.887 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 887.36' @ 12.10 hrs Surf.Area= 6,329 sf Storage= 8,164 cf

Plug-Flow detention time= 11.4 min calculated for 0.887 af (100% of inflow) Center-of-Mass det. time= 11.4 min (827.2 - 815.9)

Volume	Invert	Avail.St	orage	Storage Description			
#1	884.50'	12,6	606 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)	
Elevatior (feet		rf.Area I (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
884.50		0	0.0	0	0	0	
885.00		592	119.0	99	99	1,127	
886.00		2,992	335.0	1,638	1,737	8,934	
887.00		,	455.0	4,268	6,005	16,489	
888.00		7,559	480.0	6,601	12,606	18,407	
	Routing	Invert		et Devices	,	,	
#1	Primary	884.50'	18.0	" Round 18" Outlet	Pipe		
			Inlet	6.0' CPP, projecting, / Outlet Invert= 884.5 .013 Corrugated PE,	50' / 884.00' S= 0.	0192 '/' Cc= 0.900	
#2	Device 1	884.50'				to weir flow at low heads	
#3 Device 2		884.50'	12.0" Round 12" Inlet Pipe L= 21.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 884.50' / 884.50' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			0000 '/' Cc= 0.900	
#4	Device 1	886.40'				2 End Contraction(s)	
Primary (Primary OutFlow Max=9.76 cfs @ 12.10 hrs HW=887.36' (Free Discharge)						

-1=18" Outlet Pipe (Inlet Controls 9.76 cfs @ 5.52 fps)


2=Orifice/Grate (Passes < 2.30 cfs potential flow)

3=12" Inlet Pipe (Passes < 5.12 cfs potential flow)

-4=Sharp-Crested Rectangular Weir (Passes < 11.69 cfs potential flow)

Proposed Drainage AnalysisTyPrepared by C&S Engineers, Inc.HydroCAD® 10.10-4a s/n 04066 © 2020 HydroCAD Software Solutions LLC

Pond 1BP: Detention Pond

Summary for Pond 1CP: East Bioretention Basin

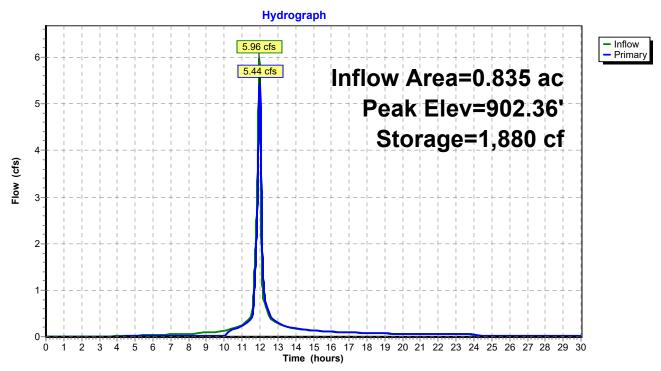
Inflow Area =	0.835 ac,70.06% Impervious,Inf	low Depth = 4.44" for 100yr event
Inflow =	5.96 cfs @ 11.97 hrs, Volume=	0.309 af
Outflow =	5.44 cfs @ 12.00 hrs, Volume=	0.293 af, Atten= 9%, Lag= 1.9 min
Primary =	5.44 cfs @ 12.00 hrs, Volume=	0.293 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 902.36' @ 12.00 hrs Surf.Area= 2,809 sf Storage= 1,880 cf

Plug-Flow detention time= 75.1 min calculated for 0.292 af (95% of inflow) Center-of-Mass det. time= 43.8 min (817.2 - 773.4)

Volume	Inve	rt Avail.S	torage	Storage Descriptio	n		
#1	901.50)' 4	,064 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
901.5	50	1,722	271.0	0	0	1,722	
902.0	00	2,191	290.0	976	976	2,582	
903.0	00	4,082	370.0	3,088	4,064	6,796	
Device	Routing	Inve	-	et Devices			
#1	Primary	898.00	-	" Round Culvert			
#2	L= 120.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 898.00' / 898.00' S= 0.0000 '/' Cc= 0.900					0.0089 '/' Cc= 0.900 Flow Area= 0.79 sf Ke= 0.900	
#3	Device 2	901.50)' 0.25	0 in/hr Exfiltration ductivity to Groundv	over Surface area	1	
#4	Device 1	902.00)' 24.0	" x 24.0" Horiz. Ori ted to weir flow at lo	fice/Grate C= 0.6		

Primary OutFlow Max=5.44 cfs @ 12.00 hrs HW=902.36' (Free Discharge)


1=Culvert (Barrel Controls 5.44 cfs @ 6.93 fps)

2=Underdrain (Passes < 0.92 cfs potential flow)

3=Exfiltration (Passes < 0.02 cfs potential flow)

-4=Orifice/Grate (Passes < 5.71 cfs potential flow)

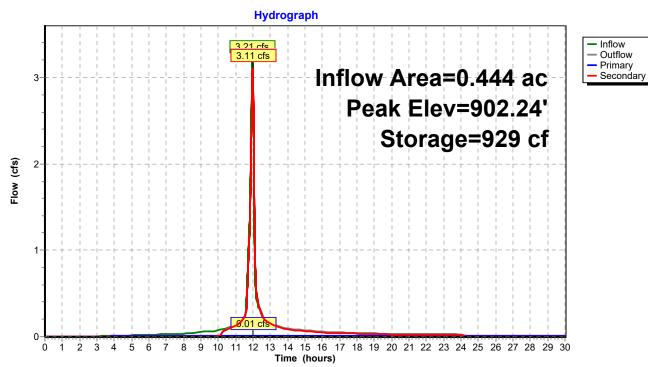
Pond 1CP: East Bioretention Basin

Summary for Pond 1DP: North Bioretention Basin

Inflow Area =	0.444 ac, 80.41% Impervious, Inflow De	epth = 4.55" for 100yr event
Inflow =	3.21 cfs @ 11.97 hrs, Volume=	0.169 af
Outflow =	3.12 cfs @ 11.99 hrs, Volume=	0.158 af, Atten= 3%, Lag= 1.1 min
Primary =	0.01 cfs @ 11.99 hrs, Volume=	0.016 af
Secondary =	3.11 cfs @_ 11.99 hrs, Volume=	0.142 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 902.24' @ 11.99 hrs Surf.Area= 1,429 sf Storage= 929 cf

Plug-Flow detention time= 82.1 min calculated for 0.158 af (94% of inflow) Center-of-Mass det. time= 47.2 min (815.8 - 768.6)


Volume	Inve	rt Ava	il.Storage	Storage Description	on				
#1	901.5	0'	2,159 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
901.5	50	1,080	152.0	0	0	1,080			
902.0	00	1,314	161.0	598	598	1,317			
903.0	00	1,822	180.0	1,561	2,159	1,860			
Device #1	Routing Primary		8.00' 6.0 "	et Devices Round Culvert 8.0' CPP, projectir	ng, no headwall, k	Ke= 0.900			
#2	Device 1	<i>v</i> ice 1 901.50'		Inlet / Outlet Invert= 898.00' / 898.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf 0.250 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 800.00'					
#3	Secondar	ry 902	2.00' 24.0	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads					

Primary OutFlow Max=0.01 cfs @ 11.99 hrs HW=902.24' (Free Discharge)

-**1=Culvert** (Passes 0.01 cfs of 1.38 cfs potential flow)

2=Exfiltration (Controls 0.01 cfs)

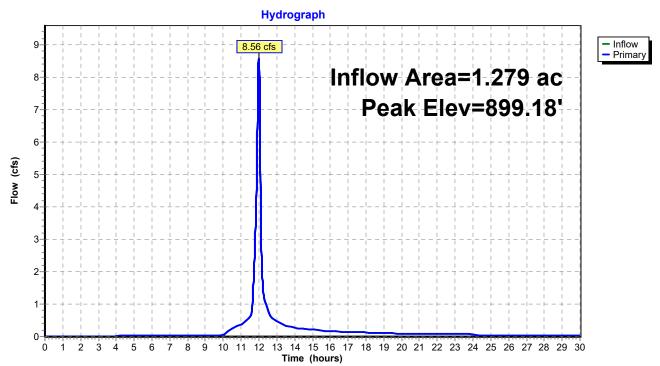
Secondary OutFlow Max=3.10 cfs @ 11.99 hrs HW=902.24' (Free Discharge) -3=Orifice/Grate (Weir Controls 3.10 cfs @ 1.61 fps)

Pond 1DP: North Bioretention Basin

Summary for Pond 1EP: Conveyance Pipe

[79] Warning: Submerged Pond 1CP Primary device # 1 INLET by 1.18'[79] Warning: Submerged Pond 1DP Primary device # 1 by 1.18'

Inflow Area =	=	1.279 ac, 73.65% Impervious, Inflow Depth > 4.23" for 100yr event	
Inflow =	=	8.56 cfs @ 11.99 hrs, Volume= 0.451 af	
Outflow =	=	8.56 cfs @11.99 hrs, Volume=0.451 af, Atten= 0%, Lag= 0.0 m	in
Primary =	=	3.56 cfs @ 11.99 hrs, Volume= 0.451 af	

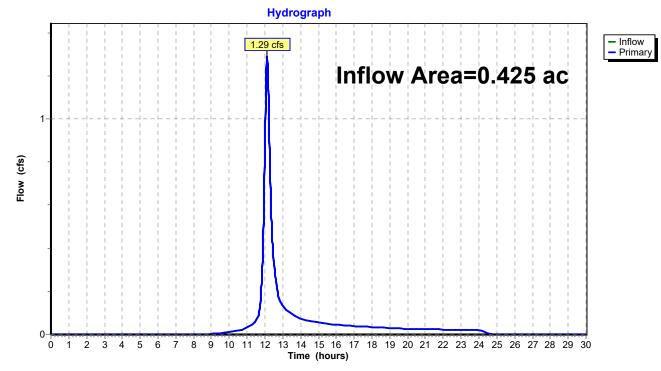

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 899.18' @ 11.99 hrs Flood Elev= 902.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	893.50'	18.0" Round Culvert
	·		L= 109.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 893.50' / 885.00' S= 0.0780 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	896.81'	18.0" Round Culvert
			L= 196.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 896.81' / 893.50' S= 0.0169 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=8.55 cfs @ 11.99 hrs HW=899.18' (Free Discharge)

-1=Culvert (Passes 8.55 cfs of 14.92 cfs potential flow)

2=Culvert (Inlet Controls 8.55 cfs @ 4.84 fps)


Pond 1EP: Conveyance Pipe

Summary for Pond 2P: Discharge to South

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.425 ac,	0.00% Impervious, Inflow D	epth = 2.65" for 100yr event
Inflow =	1.29 cfs @	12.12 hrs, Volume=	0.094 af
Primary =	1.29 cfs @	12.12 hrs, Volume=	0.094 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 2P: Discharge to South

DATE: MAY 2021 PROJECT NAME: RURAL OUTREACH CENTER			
Stormwater Quality Calculations			
Clothind Col Quality Calculation	2		
Impervious Areas (refer to Existing &	Proposed Drainage Analysis Maps)		
$I_{\text{Existing}} := 0.43$	I _{Existing} = Existing Impervious Area (acres) per Existing Drainage Analysis Map		
$I_{Proposed} := 1.21$	I _{Proposed} = Proposed Impervious Area (acres) per Proposed Drainage Analysis Map		
I _{New} := I _{Proposed} - I _{Existing}	I _{New} = New Impervious Area (acres)		
$I_{New} = 0.780$			
New office			
$I_{\text{Reconstructed}} := I_{\text{Proposed}} - I_{\text{New}}$	I _{Reconstructed} = Reconstructed Impervious Area (acres)		
$I_{\text{Reconstructed}} = 0.430$			
Minimum Runoff Reduction Volume (RR _v Min)		
The minimum RRv is calculated by app to the area of new impervious coverage	lying a reduction factor (S) (based on the HSG on site) e.		
P := 1.0	90% Rainfall Event (inches)		
$\mathbf{Rv} := 0.95$	0.05 + 0.009(I) where I is 100% impervious		
Aic := 0.78	Total Area of new impervious area (acres)		
<mark>.S</mark> .:= 0.20	Hydrologic Soil Group (HSG) Specific Reduction Factor (S) The site is 100% HSG D. Therefore, S = 0.20		
$RR_{vmin} \coloneqq \frac{P \cdot Rv \cdot Aic \cdot S}{12} = 0.012$	Runoff Reduction Volume Minimum (acre-feet)		
$RR_{vmin} \cdot 43560 = 538$	Runoff Reduction Volume Minimum (cubic-feet)		

F:\Project\D69 - FFAE\D69029001 - Rural Outreach Center\Design\Technical\Stormwater \WQv and RRv calcs.xmcd

Water Quality Volume Required (WQ, Required)

New Impervious Area

P = 1.000	90% Rainfall Event (inches)
A _n := 0.78	Total Area of New Impervious area (acres)
I := 100	Percent impervious cover (100%)
$R_v := 0.05 + 0.009 \cdot I$	0.05 + 0.009(I) where I is 100% impervious
$\mathbf{R}_{\mathbf{v}} = 0.950$	
$WQ_{vNew} \coloneqq \frac{P \cdot R_v \cdot A_n}{12}$	
$WQ_{VNew} = 0.062$	Water Quality Volume Required from New Impervious Areas (acre-feet)
$WQ_{vNew} \cdot 43560 = 2690$	Water Quality Volume Required from New Impervious Areas (cubic feet)
Reconstructed Impervious Area	
P = 1.000	90% Rainfall Event (inches)
A _r := 0.43	Total Area of new impervious area (acres)
L:= 100	Percent impervious cover (100%)
$R_{\rm M} = 0.05 + 0.009 \cdot I$	0.05 + 0.009(I) where I is 100% impervious
$R_{v} = 0.950$	
$WQ_{vRecon} := \frac{P \cdot R_v \cdot A_r}{12}$	
$WQ_{vRecon} = 0.034$	Water Quality Volume Required from Reconstructed Impervious Areas (acre-feet)

Water Quality Volume Required from Reconstructed Impervious Areas (cubic feet)

F:\Project\D69 - FFAE\D69029001 - Rural Outreach Center\Design\Technical\Stormwater \WQv and RRv calcs.xmcd

 $WQ_{vRecon} \cdot 43560 = 1483$

Total Water Quality Volume Required					
In accordance with Chapters 4 and 9 of the NYSDEC SMDM, treat 100% of the new impervious area and 25% of the reconstructed impervious area with a standard practice.					
$WQ_{VRequired} := (1.0 \cdot WQ_{VNe})$	$WQ_{vRequired} := (1.0 WQ_{vNew} + 0.25 WQ_{vRecon})$				
$WQ_{vRequired} = 0.070$	Total Water Quality Volume Required (acre-feet)				
$WQ_{vRequired}$ 43560 = 3061	Total Water Quality Volume Required (cubic feet)				
Water Quality Volume Provided (W	Q _v Provided)				
East Bioretention Basin					
P = 1.000	90% Rainfall Event (inches)				
A ₁ := 0.58	Area draining to BMP = Parking Lot + small portion of access drive = 26,070 sf 0.60 acres				
<mark></mark> ;= 100	Percent impervious cover (100%)				
$R_{\rm WW} = 0.05 + 0.009 \cdot I$	0.05 + 0.009(I) where I is 100% impervious				
$R_{V} = 0.950$					
$WQ_{v1} := \frac{P \cdot R_v \cdot A_1}{12}$					
$WQ_{v1} = 0.046$	Water Quality Volume Provided in BMP (acre-feet)				
$WQ_{v1} \cdot 43560 = 2000$	Water Quality Volume Provided in BMP (cubic feet)				
For Bioretention Basins in Type 'I towards the Runoff Reduction Vo	D' soils, 40% of the water quality volume can count blume.				
$RR_{v1} := 0.40 \cdot WQ_{v1}$					
$RR_{v1} = 0.018$	Runoff Reduction Volume Provided in BMP (acre-feet)				
$RR_{v1} \cdot 43560 = 800$	Runoff Reduction Volume Provided in BMP (cubic-feet)				
$WQ_{vProvided1} := WQ_{v1} - RR_v$	/1				
$WQ_{vProvided1} = 0.028$	Water Quality Volume Provided in BMP (acre-feet)				
$WQ_{vProvided1} \cdot 43560 = 1200$	Water Quality Volume Provided in BMP (cubic-feet)				

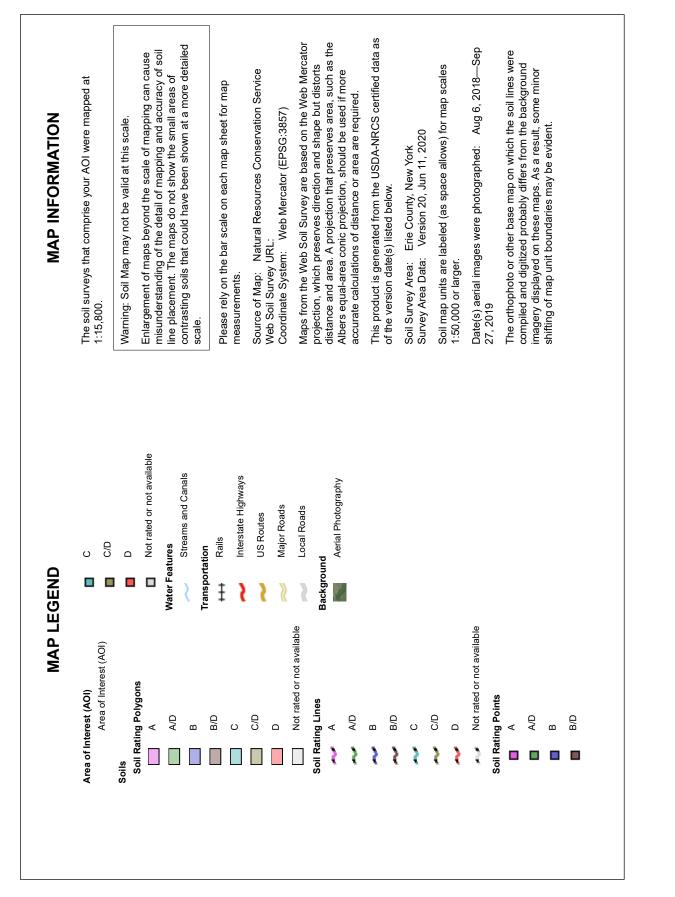
F:\Project\D69 - FFAE\D69029001 - Rural Outreach Center\Design\Technical\Stormwater \WQv and RRv calcs.xmcd

Size Filter Area of East Bioretention Basin

$WQ_{v1} \cdot 43560 = 2000$	Water Quality Volume Provided in BMP (cubic feet)
$d_{f} := 2.5$	Filter Bed Depth = 2.5 feet
k := 0.50	Coefficient of permeability of filter media = 0.50 ft/day (for bioretention soil)
$h_{f} := 0.50$	Average height of water above filter bed (feet)
$t_f := 2$	Design filter bed drain time = 2 day for bioretention
$A_{f1} := \frac{WQ_{v1} \cdot 43560 \cdot d_{f}}{k \cdot (h_{f} + d_{f}) \cdot t_{f}}$	
$A_{fl} = 1667$	Required Surface Area of filter bed (square feet)
A _f provided is 1,722 square fee <u>North Bioretention Basin</u>	t
P = 1.000	90% Rainfall Event (inches)
A ₂ := .356	Area draining to BMP = New Bldg, Sdwlks+ Future Bldg = 15,523 sf = 0.356 acres
L:= 100	Percent impervious cover (100%)
$R_{WW} = 0.05 + 0.009 \cdot I$	0.05 + 0.009(I) where I is 100% impervious
$R_{v} = 0.950$	
$WQ_{v2} := \frac{P \cdot R_v \cdot A_2}{12}$	
$WQ_{v2} = 0.028$	Water Quality Volume Provided in BMP (acre-feet)
$WQ_{v2} \cdot 43560 = 1228$	Water Quality Volume Provided in BMP (cubic feet)
For Bioretention Basins in Type 'I towards the Runoff Reduction Vo	D' soils, 40% of the water quality volume can count plume.
$RR_{v2} := 0.40 \cdot WQ_{v2}$	
$RR_{v2} = 0.011$	Runoff Reduction Volume Provided in BMP (acre-feet)
$RR_{v2} \cdot 43560 = 491$	Runoff Reduction Volume Provided in BMP (cubic-feet)

F:\Project\D69 - FFAE\D69029001 - Rural Outreach Center\Design\Technical\Stormwater \WQv and RRv calcs.xmcd

 $WQ_{vProvided2} \coloneqq WQ_{v2} - RR_{v2}$ $WQ_{vProvided2} = 0.017$ Water Quality Volume Provided in BMP (acre-feet) $WQ_{vProvided2} \cdot 43560 = 737$ Water Quality Volume Provided in BMP (cubic-feet)


Size Filter Area of North Bioretention Basin

$WQ_{v2} \cdot 43560 = 1228$	Water Quality Volume Provided in BMP (cubic feet)
d _€ := 2.5	Filter Bed Depth = 2.5 feet
k ∺= 0.50	Coefficient of permeability of filter media = 0.50 ft/day (for bioretention soil)
.h	Average height of water above filter bed (feet)
t _f := 2	Design filter bed drain time = 2 day for bioretention
$A_{f2} := \frac{WQ_{v2} \cdot 43560 \cdot d_{f}}{k \cdot (h_{f} + d_{f}) \cdot t_{f}}$	
$A_{f2} = 1023$	Required Surface Area of filter bed (square feet)

A_f provided is 1,080 square feet

Hydrologic Soil Group—Erie County, New York (Rural Outreach Center - 730 Olean Rd., Aurora, NY)

11/4/2020 Page 2 of 4

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

NSDA

Hydrologic Soil Group

	1	1		
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
OrC	Orpark silt loam, 8 to 15 percent slopes	C/D	1.2	17.5%
RkB	Rhinebeck gravelly loam, 3 to 8 percent slopes	C/D	5.4	82.5%
Totals for Area of Interest			6.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX C

SANITARY SEWER & SEPTIC SYSTEM CALCULATIONS

DATE: April 1, 2021 PROJECT NAME: Rural Outreach Center

Sanitary Calculations

Loading Rates taken from NYSDEC Design Standards for Intermediate Sized Wastewater Treatment Systems (2014) - Table B-3: Typical Per-Unit Hydraulic Loading Rates

Church/Multi-Purpose Space = 2.4 gpd/seat (3 gpd/seat reduced by 20% with using water saving reducing plumbing fixtures Offices = 12 gpd/employee (15 gpd/employee reduced by 20% with using water saving reducing plumbing fixtures

Classroom = 8 gpd/seat (10 gpd/seat reduced by 20% with using water saving reducing plumbing fixtures

Kitchen/Banquet = 8 gpd/seat (10 gpd/seat reduced by 20% with using water saving reducing plumbing fixtures

$LR_{office} := 12 \cdot \frac{gal}{day}$	Hydraulic Loading Rate (gal/day per employee)
$LR_{class} := 8 \cdot \frac{gal}{day}$	Hydraulic Loading Rate (gal/day per seat)
$LR_{Church} := 2.4 \cdot \frac{gal}{day}$	Hydraulic Loading Rate (gal/day per seat)

$$LR_{Banquet} := 8 \cdot \frac{gal}{day}$$
 Hydraulic Loading Rate (gal/day per seat)

Building Uses/Matrix

N _{Offices} := 22	14 full time staff + 8 full time visitors
$N_{Class} := 20$	2 classrooms with 10 people per room
N _{Church} := 120	Number of people attending church services
N _{Banquet} := 120	Number of people attending banquet

Average Daily Design Flow

Scenario # 1: Counseling Services include office and classroom used on a daily basis

Per Erie County Water Authority water records, the existing facility uses 9,000 gallons quarterly = 3,000 gallons/month = 100 gpd

$$Q_1 := 100 \cdot \frac{\text{gal}}{\text{day}}$$

Scenario #2: Church Service

 $Q_2 := N_{Church} \cdot LR_{Church}$

$$Q_2 = 288 \cdot \frac{gal}{day}$$

Scenario #3: Banquet Event

$$Q_3 := N_{Banquet} \cdot LR_{Banquet}$$

$$Q_3 = 960 \cdot \frac{\text{gal}}{\text{day}}$$

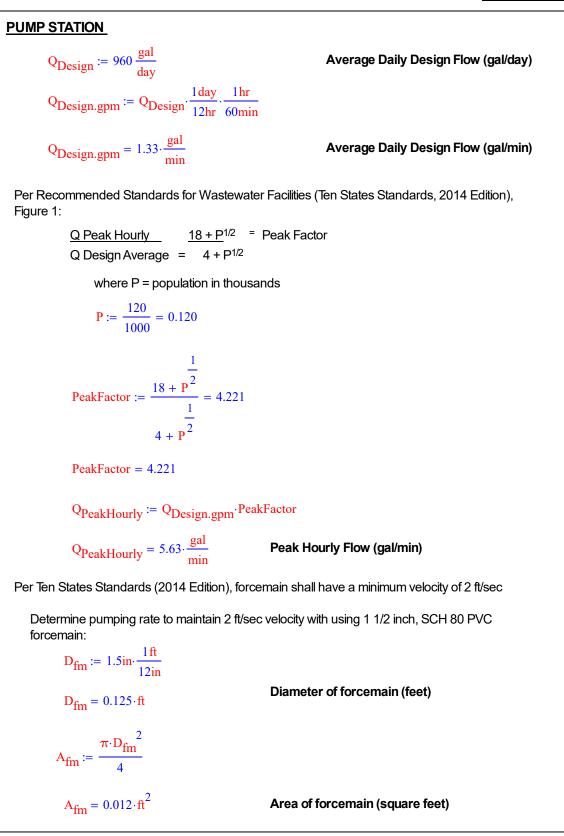
Scenario #3 is the worst case scenario. Accordingly, use 960 gal/day for design.

$$Q := 960 \frac{\text{gal}}{\text{day}}$$

Design flow (gal/day)

Sand Filter

Design Per "Residential Onsite Wastewater Treatment System Design Handbook," NYS Department of Health (2012) $Q = 960 \cdot \frac{\text{gal}}{\text{day}}$ Design Flow (gal/day) $q := 1.0 \frac{\frac{gal}{day}}{e^2}$ Application Rate (gal/day/s.f.) $SA := \frac{Q}{q}$ $SA = 960 \cdot ft^2$ Surface Area required of sand filter (s.f) $w_{dh} := 3ft$ Width of Distribution Bed (feet) $L := \frac{SA}{W_{db}}$ $L = 320 \cdot ft$ Total Length of Distribution Lines (ft) $\mathbf{N} := \frac{\mathbf{L}}{40}$ Number of Distribution Lines 3' o.c., 40' long $N = 8.0 \cdot ft$ Use N = 8 The distribution system shall be designed to dose the filter at least 2 times daily based upon the design flow rate. The volume of each dose shall be approximately 75% of the volume of the distribution lines when dosing is used. Number of Distribution Lines $N_d := 8$ Length of Distribution Lines (ft) $L_d := 40ft$ $d_d := 4in$ Diameter of Distribution Lines (in) $A_{d} := \frac{3.14}{4} \cdot \left[\frac{d_{d}}{\left(\frac{12in}{1ft}\right)} \right]^{2} \qquad A_{d} = 0.087 \cdot ft^{2}$ Area of Distribution Lines (ft²) $V_d := N_d \cdot A_d \cdot L_d$ $V_d = 27.91 \cdot ft^3$ Volume of Distribution Lines (ft^3) $V_{dgal} := V_d \cdot \frac{7.48 \text{gal}}{1 \text{ ft}^3}$ $V_{dgal} = 208.8 \cdot \text{gal}$ Convert cubic feet to gallons (1ft^3=7.48gallons) $V_{dose} := 0.75 \cdot V_{dgal}$ $V_{dose} = 156.6 \cdot gal$ Dosing volume (gallons)


 $V_{daily} := 960 gal$

Average Daily Design Volume (gal)

		Communes		
$N_{doses} \coloneqq \frac{V_{daily}}{V_{dose}}$	$N_{doses} = 6.13$	Number of doses per day (2 min)		
The dosing requireme	nt is met by the desig	n flow.		
Downstream Modified S	hallow Trench			
Handbook," NYS Dep		r Treatment System Design 12)		
$Q = 960.000 \cdot \frac{gal}{day}$		Design Flow (gal/day)		
$Q_{d} := 0.85 \cdot Q = 816$ $q_{d} := 1.2 \frac{\frac{gal}{day}}{ft^{2}}$	day	<i>Downstream Design Flow (gal/day); 85% of the design flow</i>		
$\mathbf{g} \coloneqq 1.2 \frac{\mathrm{day}}{\mathrm{ft}^2}$		Application Rate (gal/day/s.f.)		
$SA := \frac{Q_d}{q}$	$SA = 680 \cdot ft^2$	Surface Area required of trenches (s.f)		
$w_{at} \coloneqq 2ft$		Width of Absorption Trench = 2 feet		
$L := \frac{SA}{w_{at}}$	$L = 340 \cdot ft$	Total Length of Distribution Lines (ft)		
$\mathbf{N} := \frac{\mathbf{L}}{57}$	$N = 6.0 \cdot ft$	Number of Distribution Lines 2' wide, 57' long		
	Use N = 6			
Septic Tank				
Design Per "Resident		r Treatment System Design		
Handbook," NYS Dep	artment of Health (201	12)		
$Q = 960 \cdot \frac{\text{gal}}{\text{day}}$		Design Flow (gal/day)		
$\mathbf{W} \coloneqq 1.5 \cdot \mathbf{Q}$				
$V = 1440.000 \cdot \frac{\text{gal}}{\text{day}}$		Tank Size (gal)		
Use tank size = 1,500 gallon				

 $V_{fm} := \frac{2ft}{sec}$ $Q_{fm} = (V_{fm})(A_{fm})$ $Q_{fm} := V_{fm} \cdot A_{fm}$ $Q_{fm} = 0.025 \cdot \frac{ft^3}{sec}$ $Q_{fm.gpm} := Q_{fm} \cdot \frac{7.48gal}{ft^3} \cdot \frac{60sec}{1min}$ $Q_{fm.gpm} = 11.015 \cdot \frac{gal}{min}$ Flow in forcemain (gal/min)

The pumping rate is to be the larger of either the peak flowrate or the required flowrate to maintain the minimum velocity of 2 ft/sec.

The required flowrate to maintain min. velocity of 2 ft/sec governs.

Therefore use a pumping rate of 11 gal/min

Headloss Calcs

Inlet to pump station = 897.09

Elevation of forcemain @ Distribution Box = 900.00

Using a 6-foot diameter lift station:

$$D_{LS} := 6ft$$

$$A_{LS} := \frac{\pi \cdot D_{LS}^{2}}{4}$$

$$A_{LS} = 28.27 \cdot ft^{2}$$

$$A_{LS} = 28.27 \cdot ft^{2}$$

$$V_{LS} := A_{LS} \cdot \frac{7.48 \text{ gal}}{ft^{2}}$$

$$V_{LS} := A_{LS} \cdot \frac{7.48 \text{ gal}}{ft^{2}}$$

$$V_{LS} = 211.5 \cdot \text{ gal}$$

$$V_{dose} = 156.6 \cdot \text{ gal}$$

$$V_{dose} = 156.6 \cdot \text{ gal}$$

$$Dosing Volume in gallons$$

Storage Required: Storage := $\frac{V_{dose}}{V_{LS}}$ Storage Required in feet Storage = 0.740Top of Pump Station = 903.50 6" Inlet Elevation = 900.09 Alarm = 899.16 2 Pumps "On" = 898.66 1 Pump "On" = 898.16 Pumps "Off" = 897.42 Bottom of Pump Station = 897.00 Total Depth = 6.50 feet Static Lift = Elevation of forcemain @ Distribuition Box - Pumps "Off" Elevation = 903.17 - 897.42 Static Lift = 5.75 feet Forcemain is 6 linear feet, and assume 10% for minor losses: Effective Length = 6 + (0.10)6 = 6.6 = 7 feet Calculate Friction Losses in Forcemain for multiple flowrates to develop system curve: $h_{I} = 10.44 (L) (Q^{1.85})$ Where: C^{1.85} d^{4.87} h_I = headloss in feet L = forcemain length = 7 feet Q = flow in gpm C = coefficient of friction for PVC pipe = 120 d = forcemain diameter (in inches) = 1.5 inches for Q = 5 gpm: $Q_{5gpm} := 5$ $C_{c} := 120$ d := 1.5 $L_{c} := 7$ $h_{L1} := \frac{10.44 \cdot 7 \cdot Q_{5gpm}}{C^{1.85} \cdot d^{4.87}}$ $h_{L1} = 0.028$ ft

for Q = 10 gpm: $Q_{10gpm} := 10$ $C_{r} := 120$ $d_{r} := 1.5$ $L_{r} := 7$ $h_{L2} := \frac{10.44 \cdot 7 \cdot Q_{10gpm}}{C^{1.85} \cdot d^{4.87}}$ $h_{L,2} = 0.102$ ft for Q = 11 gpm: $Q_{11gpm} := 11$ $C_{c} := 120$ $d_{c} := 1.5$ $L_{c} := 7$ $\mathbf{h}_{L3} \coloneqq \frac{10.44 \cdot 7 \cdot Q_{11}}{C^{1.85} \cdot d^{4.87}}$ $h_{L,3} = 0.122$ ft for Q = 15 gpm: $Q_{15gpm} := 15$ $C_{15gpm} := 120$ $d_{15gpm} := 1.5$ $L_{15gpm} := 7$ $h_{L4} := \frac{10.44 \cdot 7 \cdot Q_{15gpm}}{C^{1.85} \cdot d^{4.87}}$ $h_{L,4} = 0.217$ ft for Q = 20 gpm: $Q_{20gpm} := 20$ $C_{c} := 120$ $d_{c} := 1.5$ $L_{c} := 7$ $h_{L5} := \frac{10.44 \cdot 7 \cdot Q_{20gpm}}{C^{1.85} \cdot d^{4.87}}$ $h_{L,5} = 0.369$ ft

for Q = 25 gpm:

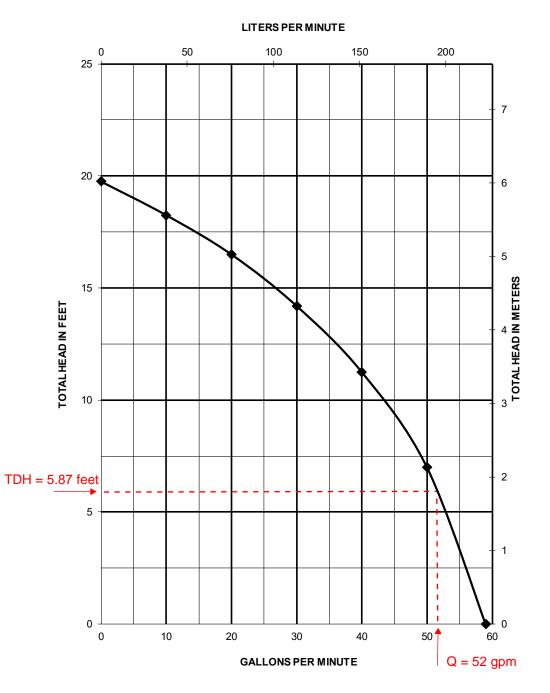
$$Q_{25gpm} := 25$$
 $C_{v} := 120$ $d_{v} := 1.5$ $L_{v} := 7$

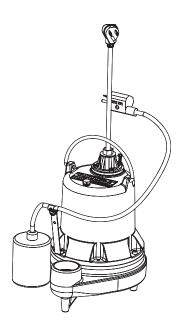
$$\mathbf{h}_{L6} \coloneqq \frac{10.44 \cdot 7 \cdot Q_{25gpm}^{} 1.85}{\mathbf{C}^{1.85} \cdot \mathbf{d}^{4.87}}$$

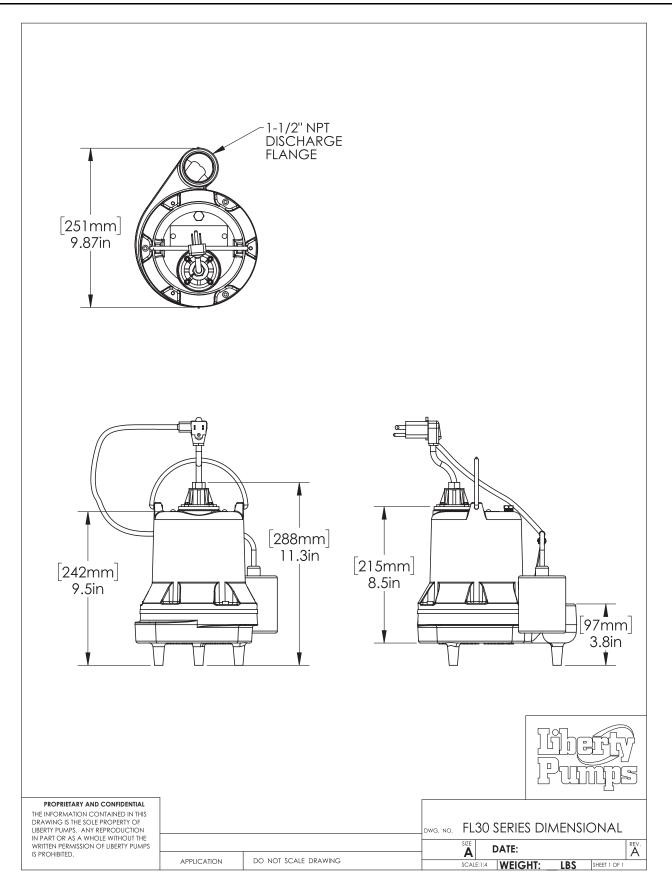
$$h_{L6} = 0.557$$
 ft

Flov	vrate	Velocity in forcemain	h _L in pipe	Static Lift	TDH
					(h∟ in pipe + Static Lift)
gpm	cfs	ft/sec	feet	feet	in feet
0	0	0.00	0	5.75	5.75
5	0.011	0.93	0.028	5.75	5.78
10	0.022	1.86	0.102	5.75	5.85
11	0.025	2.04	0.122	5.75	5.87
15	0.033	2.79	0.217	5.75	5.97
20	0.045	3.71	0.369	5.75	6.12
25	0.056	4.64	0.557	5.75	6.31

Choose a pump capable of 11 gpm @ 5.87 feet TDH


Use (2) Liberty Pumps Model FL-30-Series, 1/3 HP submersible effluent pumps with 1 1/2" discharge.


Pump will operate at around 52 gpm


Pump Specification

FL30-Series 1/3 HP Submersible Effluent Pumps

Copyright © Liberty Pumps, Inc. 2019All rights reserved.Specifications subject to change without notice.FL307000 Apple Tree AvenueBergen NY 14416Phone 800-543-2550Fax 585-494-1839Email Liberty@LibertyPumps.comWeb

FL30-Series Electrical Data

MODEL	НР	VOLTAGE	PHASE	FULL LOAD AMPS	LOCKED ROTOR AMPS	THERMAL OVERLOAD TEMP	STATOR WINDING CLASS	CORD LENGTH	PUMP DISCHARGE	AUTOMATIC
FL31A	1/3	115	1	10.5	26	105°C / 221°F	В	10′	1-1/2" NPT	YES
FL31A-2	1/3	115	1	10.5	26	105°C / 221°F	В	25′	1-1/2" NPT	YES
FL31A-3	1/3	115	1	10.5	26	105°C / 221°F	В	35′	1-1/2" NPT	YES
FL31M	1/3	115	1	10.5	26	105°C / 221°F	В	10′	1-1/2" NPT	NO
FL31M-2	1/3	115	1	10.5	26	105°C / 221°F	В	25′	1-1/2" NPT	NO
FL31M-3	1/3	115	1	10.5	26	105°C / 221°F	В	35'	1-1/2" NPT	NO
FL31M-5	1/3	115	1	10.5	26	105°C / 221°F	В	50′	1-1/2" NPT	NO
FL32A	1/3	208–230	1	5.5	12	105°C / 221°F	В	10′	1-1/2" NPT	YES
FL32A-2	1/3	208–230	1	5.5	12	105°C / 221°F	В	25′	1-1/2" NPT	YES
FL32A-3	1/3	208–230	1	5.5	12	105°C / 221°F	В	35'	1-1/2" NPT	YES
FL32M	1/3	208–230	1	5.5	12	105°C / 221°F	В	10′	1-1/2" NPT	NO
FL32M-2	1/3	208–230	1	5.5	12	105°C / 221°F	В	25′	1-1/2" NPT	NO
FL32M-3	1/3	208–230	1	5.5	12	105°C / 221°F	В	35'	1-1/2" NPT	NO
FL32M-5	1/3	208–230	1	5.5	12	105°C / 221°F	В	50'	1-1/2" NPT	NO

FL30-Series Technical Data

IMPELLER	MULTI-VANE ENGINEERED POLYMER
PAINT	POWDER COATING
MAX LIQUID TEMP	60°C / 140°F
MAX STATOR TEMP (1-PHASE)	130°C / 250°F
THERMAL OVERLOAD	105°C / 221°F
POWER CORD TYPE	SJTW
MOTOR HOUSING	CLASS 25 CAST IRON
VOLUTE	CLASS 25 CAST IRON
SHAFT	STAINLESS
HARDWARE	STAINLESS
O-RINGS	BUNA-N
MECHANICAL SEAL	UNITIZED CERAMIC CARBON
WEIGHT	37 LBS / 16.8 KG

1.01 GENERAL

The contractor shall provide labor, material, equipment, and incidentals required to provide ______ (QTY) centrifugal pumps as specified herein. The pump models covered in this specification are FL30-Series single-phase pumps. The pump furnished for this application shall be model ______ as manufactured by Liberty Pumps.

2.01 OPERATING CONDITIONS

Each submersible pump shall be rated at 1/3 hp, ______ volts, single-phase, 60 Hz, 1725 RPM. The unit shall produce _____ GPM at _____ feet of total dynamic head.

The submersible pump shall be capable of handling effluent with 3/4" solids handling capability. The submersible pump shall have a shut-off head of 19.8 feet and a maximum flow of 58 GPM @ 5 feet of total dynamic head.

The pump shall be controlled with:

- _____ Piggyback style ON/OFF float switch
- _____ NEMA 4X outdoor simplex control panel with three float switches and a high water alarm
- _____ NEMA 1 indoor simplex control panel with three float switches and a high water alarm
- _____ NEMA 4X outdoor simplex control panel with four float switches and a high water alarm
- _____ NEMA 1 indoor simplex control panel with four float switches and a high water alarm
- _____ NEMA 4X outdoor duplex control panel with three float switches and a high water alarm
- _____ NEMA 1 indoor duplex control panel with three float switches and a high water alarm
- _____ NEMA 4X outdoor duplex control panel with four float switches and a high water alarm
- _____ NEMA 1 indoor duplex control panel with four float switches and a high water alarm

3.01 CONSTRUCTION

Each centrifugal effluent pump shall be equal to the course certified FL30-Series pumps as manufactured by Liberty Pumps, Bergen NY. The castings shall be constructed of class 25 cast iron. The motor housing shall be oil filled to dissipate heat. Air filled motors shall not be considered equal since they do not properly dissipate heat from the motor. All mating parts shall be machined and sealed with a Buna-N O-ring. All fasteners exposed to the liquid shall be stainless steel. The motor shall be protected on the top side with sealed cord entry plate with molded pins to conduct electricity, eliminating the ability of water to enter internally through the cord. The motor shall be protected on the lower side with a unitized ceramic/carbon seal with stainless steel housings and spring. The pump shall be furnished with stainless steel handle.

4.01 ELECTRICAL POWER CORD

The submersible pump shall be supplied with 10, 25, 35, or 50 feet of multiconductor power cord. It shall be cord type SJTW, capable of continued exposure to the pumped liquid. The power cord shall be sized for the rated full load amps of the pump in accordance with the National Electric Code. The power cable shall not enter the motor housing directly but will conduct electricity to the motor by means of a watertight compression fitting cord plate assembly, with molded pins to conduct electricity. This will eliminate the ability of water to enter internally through the cord by means of a damaged or wicking cord.

5.01 MOTORS

Single-phase motors shall be oil filled, permanent split capacitor, class B insulated NEMA B design, rated for continuous duty. Since air filled motors are not capable of dissipating heat as effectively, they shall not be considered equal. At maximum load, the winding temperature shall not exceed 130°C unsubmerged. The pump motor shall have an integral thermal overload switch in the windings for protecting the motor. The capacitor circuit shall be mounted internally in the pump.

6.01 BEARINGS AND SHAFT

Upper and lower ball bearings shall be required. The bearings shall be a single ball/race type bearing. Both bearings shall be permanently lubricated by the oil that fills the motor housing. The motor shaft shall be made of 300 or 400 series stainless steel and have a minimum diameter of 0.500".

7.01 SEALS

The pump shall have a unitized carbon/ceramic seal with stainless steel housings and spring equal to Crane Type 6a. The motor plate/ housing interface shall be sealed with a Buna-N O-ring.

8.01 IMPELLER

The impeller shall be engineered polymer, with pump out vanes on the back shroud to keep debris away from the seal area. It shall be threaded to the motor shaft.

9.01 CONTROLS

All units can be supplied with CSA and UL approved automatic wide angle tilt float switches. The switches shall be equipped with piggyback style plug that allows the pump to be operated manually without the removal of the pump in the event that a switch becomes inoperable. Manual pumps are operable by means of a pump control panel.

10.01 PAINT

The exterior of the casting shall be protected with powder coat paint.

11.01 SUPPORT

The pump shall have cast iron support legs, enabling it to be a freestanding unit. The legs will be high enough to allow 3/4" solids to enter the volute.

12.01 SERVICEABILITY

Components required for the repair of the pump shall be shipped within a period of 24 hours.

13.01 FACTORY ASSEMBLED TANK SYSTEMS WITH GUIDE RAIL AND QUICK DISCONNECT DISCHARGE

- Factory mounted guide rail system with pump suspended by means of bolt-on quick disconnect that is sealed by means of nitrile grommets or O-rings. The discharge piping shall be schedule 80 PVC and furnished with a PVC check valve and shut-off ball valve. The tank shall be wound fiberglass or roto-molded plastic. An inlet hub shall be provided with the fiberglass systems.
- _____ Stainless steel guide rail
- _____ Zinc plated steel guide rail
- _____ " diameter of basin
- _____ " height of basin
- _____ distance from top of tank to discharge pipe outlet
- _____ Fiberglass cover
- _____ Structural foam polymer cover
- _____ Steel cover
- _____ Simplex system with outdoor panel and alarm
- _____ Duplex system with outdoor panel and alarm
- _____ Separate outdoor alarm
- _____ Remote outdoor alarm

14.01 TESTING

The pump shall have a ground continuity check and the motor chamber shall be hi-potted to test for electrical integrity, moisture content, and insulation defects. The motor and volute housing shall be pressurized, and an air leak decay test performed to ensure integrity of the motor housing. The pump shall be run, voltage current monitored, and checked for noise or other malfunction.

15.01 QUALITY CONTROL

The pump shall be manufactured in an ISO 9001 certified facility.

16.01 WARRANTY

Standard limited warranty shall be 3 years.

NEW YORK STATE DEPARTMENT OF HEALTH Bureau of Water Supply Protection

Percolation Test Data

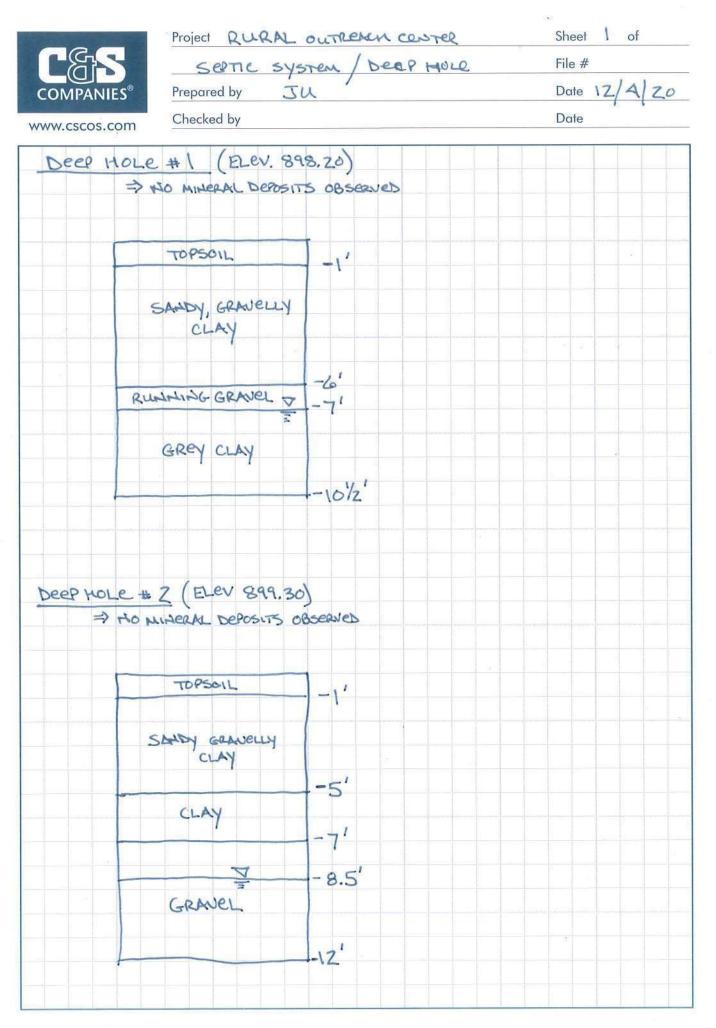
(see instructions on reverse side)

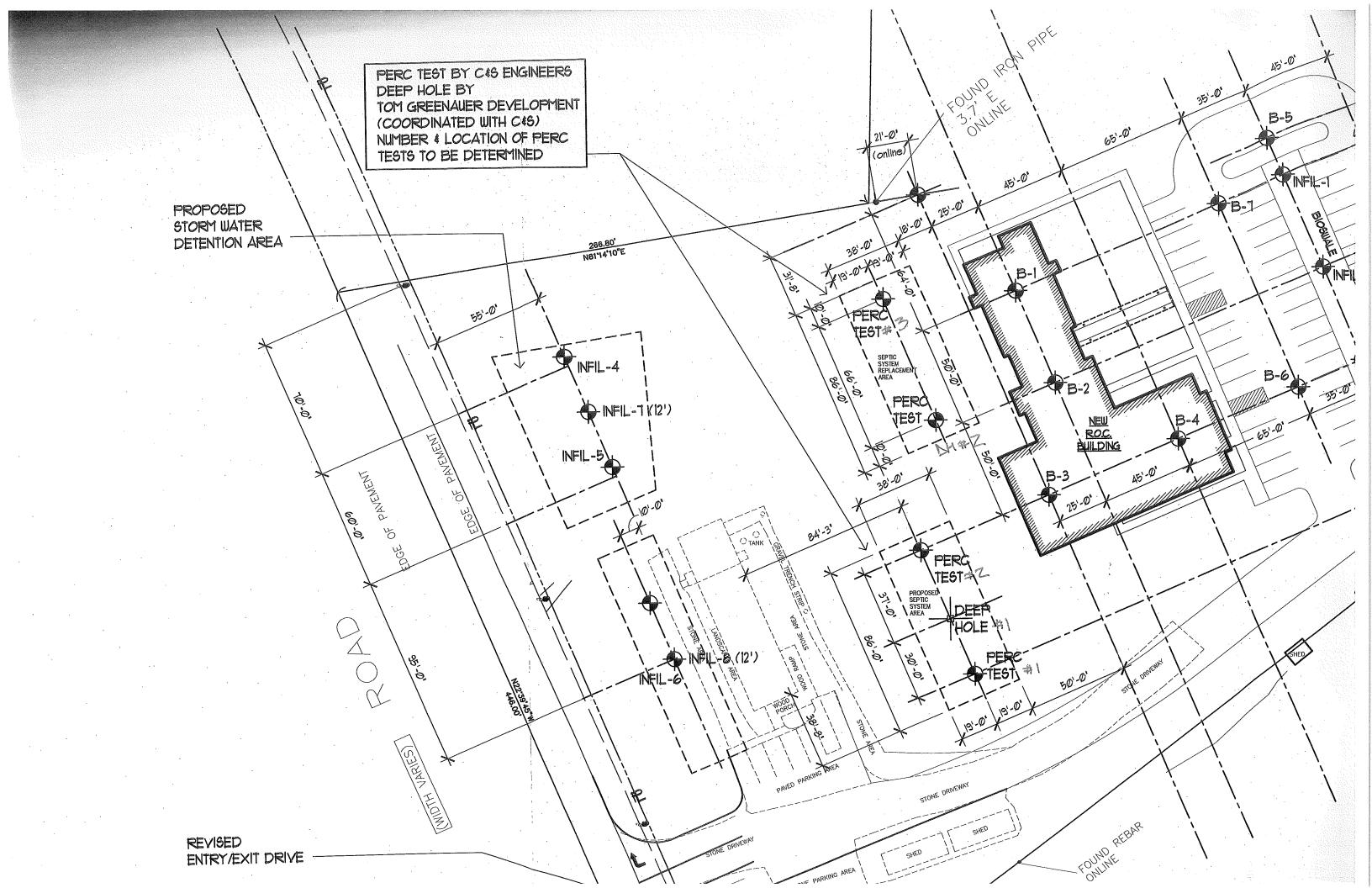
)evelop)ate:	oment Site:	RUR A)ZC	AL OUTREACH CEPTER (1											
			DVERCAST, AI'F	ests Conducted	ву:	CAILLE	el co	J ER	61-00	25)				
Test Hole No.	Test Hole Depth (inches)	Lot	Soil Profile Description and	Presoaking	1	Percolation Test								
140,	(incres)	No.	Groundwater Depth (if identified)	Date & Time	Time	1	2	3	4	5	6			
21	30"		See Deep Hole#1	12/3/20 11AM-	Begin	10:06 Am			-		¥1			
2		9. 		3-PM	Result	FAIL								
	2 14				End		9:21	9:30						
2	30"		See Deep Hole #1	12/3/20 11AM-3PM	Begin	9 07M	19:15	9:24						
	V.		¹ 1		Result	GNIN	GMIN	GMIN						
					. End									
			, ⁹ 2		Begin									
			×		Result				14		521			
3	30"		See. Deep Harc #7	12/3/20 11.An-384	End		DID	NOT	DRE	96				
ene			See Deep Hac # Z	11. An-31M	Begin		FRO	n pa	SOAX					
-	T		× *		Result		=>eve	> ZA	AFTR	WALD	5			
		-	GRADE 899.30'		End			1	k		2			
					Begin									
					Result									
					End	\$3								
			The second second		Begin									
					Result									

Begin time, end time, and result in minutes for a water elevation change from 6" to 5" above the bottom of the test hole.

DOH-1327 (12/10) Page 1 of 2

INSTRUCTIONS


Procedure:


- 1) At least two percolation tests shall be performed within the proposed absorption area. At least one percolation test should also be performed within the proposed absorption system expansion area.
- (2) Dig each hole with vertical sides approximately 12 inches in diameter. If an absorption field is being considered, the depth of test holes should be 24 to 30 inches below final grade or at the projected bottom of trenches in shallower/deeper systems based upon test hole evaluation. The sides of the percolation holes should be scraped to avoid smearing. Place washed aggregate in the lower two inches of each test hole to reduce scouring and silting action when water is poured into the hole.
- (3) Presoak the test holes by periodically filling the hole with water and allowing the water to seep away. This procedure should be performed for at least four hours and should begin one day before the test (except in clean coarse sand and gravel). After the water from the final presoaking has seeped away, remove any soil that has fallen from the sides of the hole.
- (4) Pour clean water into the hole, with as little splashing as possible, to a depth of six inches above the bottom of the test hole.
- (5) Observe and record the time in minutes required for the water to drop from the six-inch depth to the five-inch depth.
- (6) Repeat steps (4) and (5) a minimum of three times until the time for the water to drop from six inches to five inches for two successive tests is approximately equal (i.e., ≤ 1 min. for 1-30 min./inch, ≤ 2 min. for 31-60 min./inch). The longest time interval to drop one inch will be taken as the stabilized rate of percolation.
- (7) Percolation test results shall be consistent with soil classification and if different results are obtained for multiple holes in a proposed absorption area, the slowest stabilized rate shall be used for system design.

JASON UTZIG

_____, the undersigned certify that the percolation tests were conducted by me or under my direction in accord with the above procedure. The data and results are true and correct.

Date: 12/4 20	3	Sile
Signature:	. Utry	e
License No. (P.E., R.A., L.S.)	089686	

APPENDIX D

WATER CALCULATIONS

WATER $\rm H_{L}$ CALCULATIONS FOR RURAL OUTREACH CENTER

Water Demand

Domestic Service

Assume 120% of the sewer design flow

Domestic water demand approximately equal to peak sewer flow = 5.63 gpm However, per plumbing engineer, the peak domestic flow based upon fixture units is 80 gpm. Accordingly, use a peak domestic flow of 80 gpm

 $Q_{DomesticPeak} := 80 \text{ gpm}$

Hydrant Flow Test information from the Erie County Water Authority dated 11/10/2009.

Static Pressure = 64 psi

Residual Pressure = 56 psi with total flow of 1,138 gpm

Pressure_{static} := 64 psi

Pressure_{residual} := 56 psi

Determine headloss in proposed domestic service:

Length of 3 inch PE domestic service from tap location to the building = 320 ft

$$L_{D} := 320 \text{ feet}$$

$$D_{D} := 3 \text{ inches}$$

$$C_{D} := 140$$

$$h_{L} := \frac{10.44 \cdot L_{D} \cdot Q_{DomesticPeak}}{C_{D}^{1.85} \cdot D_{D}^{4.87}}$$

$$h_{L} = 5.632 \text{ feet}$$

$$h_{Lpsi} := 0.433 \cdot h_{L}$$

$$h_{Lpsi} = 2.4 \text{ psi}$$

Determine headloss due to fittings:

Determine headloss due to elevation:

Elevation Charge = 905.00 - 886.00 = 19 feet

 $h_{lelevation.ft} := 19$ feet

 $h_{lelevation} := 0.433 \cdot h_{lelevation.ft}$

 $h_{lelevation} = 8.2$ psi

Determine headloss through 2 1/2-inch Watts LF957 RPZ:

- refer to attached cut sheet w/ 80 gpm domestic flow

 $h_{LRPZ} := 10 \text{ psi}$

Determine headloss through 2-inch Neptune T-10 meter: - refer to attached cut sheet w/ 80 gpm domestic flow

 $h_{LMeter} := 2.5$ psi

Calculate Residual Pressure at building:

Residual Pressure = Residual in watermain - Sum of headloss

 $Pressure_{residualbldg} := Pressure_{residual} - (h_{Lpsi} + h_{Lfittings} + h_{lelevation} + h_{LRPZ} + h_{LMeter})$

Pressure_{residualbldg} = 31.8 psi

A 3-inch PE domestic water service lateral has capacity for the proposed domestic water demand with a residual pressure of 31.8 psi at the building.

Residual Pressure at Building with Required Fire Flow

Required Fire Flow = 500 gpm (preliminary per fire protection engineer)

 $Q_{fireflow} := 500 \text{ gpm}$

Determine headloss in proposed fire protection service:

Length of 6-inch PVC fire protection service from tap location to the building = 365 ft

$$L_{F} := 320 \quad \text{feet}$$

$$D_{F} := 6 \quad \text{inches}$$

$$C_{F} := 140$$

$$h_{LA} := \frac{10.44 \cdot L_{F} \cdot Q_{\text{fireflow}}}{C_{F}} \frac{1.85}{\cdot D_{F}} \frac{1.85}{4.87}$$

 $h_L = 5.715$ feet $h_{Lpsi} = 0.433 \cdot h_L$ $h_{Lpsi} = 2.5$ psi

Determine headloss due to fittings:

ht.fittingsv = 1 psi

Determine headloss due to elevation:

Elevation Charge = 905.00 - 886.00 = 19 feet

helevation ft := 19 feet

 $h_{lowation} = 0.433 \cdot h_{lelevation.ft}$

h_{lelevation} = 8.2 psi

Determine headloss through 4-inch Watts LF757 DCDA: - refer to attached cut sheet w/ 500 gpm fire flow

h_{LDCDA} := 8 psi

Calculate residual pressure at building using required fire flow:

Residual Pressure = Residual at watermain - Sum of headloss

 $\frac{Pressure}{Pressure} = Pressure}{residual} - (h_{Lpsi} + h_{Lfittings} + h_{lelevation} + h_{LDCDA})$

Pressure_{residualbldg} = 36.3 psi

At the building, a 500 gpm fire flow can be provided within a 6-inch PVC fire protection service with 36.3 psi residual pressure.

A PRODUCT SHEET OF NEPTUNE TECHNOLOGY GROUP

T-10[®] METER SIZES: 1 ½" and 2"

Construction

Every Neptune[®] T-10[®] water meter meets or exceeds the latest AWWA C700 Standard. Its nutating disc, positive displacement principle has been time-proven for accuracy and dependability since 1892, ensuring maximum utility revenue.

The T-10 water meter consists of three major assemblies: a register, a lead free, high-copper alloy maincase, and a nutating disc measuring chamber.

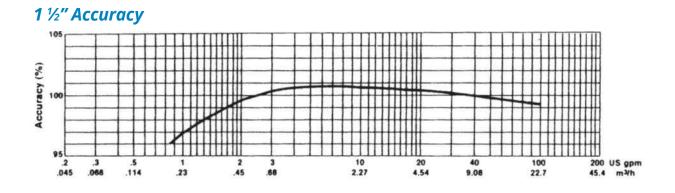
The T-10 meter is available with a variety of register types. For reading convenience, the register can be mounted in one of four positions on the meter.

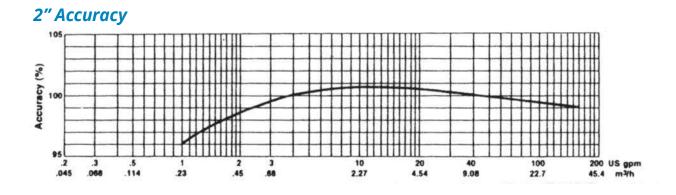
The corrosion-resistant, lead-free, high-copper alloy maincase will withstand most service conditions: internal water pressure, rough handling, and in-line piping stress.

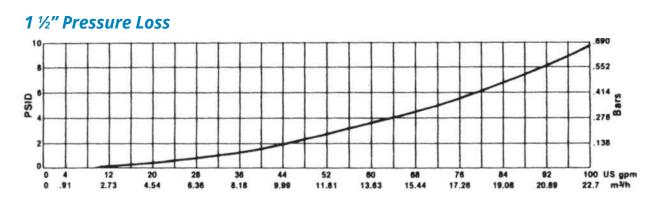
The innovative floating chamber design of the nutating disc measuring element protects the chamber from frost damage while the unique chamber seal extends the low-flow accuracy by sealing the chamber outlet port to the maincase outlet port. The nutating disc measuring element utilizes corrosion-resistant materials throughout and a thrust roller to minimize wear.

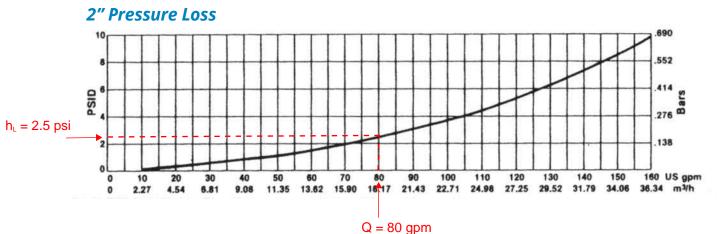
Warranty

Neptune provides a limited warranty for performance, materials and workmanship. See warranty statement for details.


KEY FEATURES

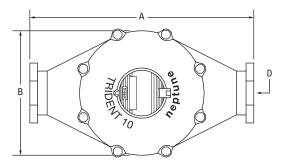

Register

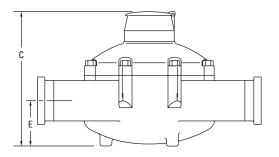

- Magnetic-driven, low-torque registration ensures accuracy
- Impact-resistant register
- High-resolution, low-flow leak detection
- Bayonet-style register mount allows in-line serviceability
- Tamperproof seal pin deters theft
- Date of manufacture, size, and model stamped on dial face


Lead Free Maincase

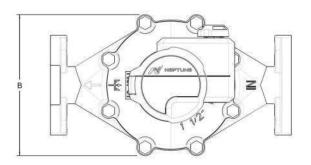
- Made from lead free, high-copper alloy
- NSF/ANSI 61 Certified
- NSF/ANSI 372 Certified
- Lifetime guarantee
- Resists internal pressure stresses and external damage
- Handles in-line piping variations and stresses
- Lead free, high-copper alloy provides residual value vs. plastic
- Electrical grounding continuity
- Nutating Disc Measuring Chamber
- Positive displacement
- Widest effective flow range for maximum revenue
- Proprietary polymer materials maximize long-term accuracy
- Floating chamber design is unaffected by meter position or in-line piping stresses

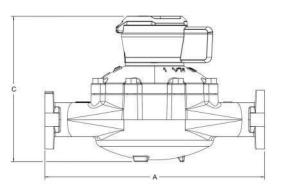
These charts show typical meter performance. Individual results may vary.


Operating Characteristics


Meter	Normal Operating Range	AWWA	Low Flow
Size	@100% Accuracy (±1.5%)	Standard	@ 95% Accuracy
1 ½"	2 to 100 US gpm	5 to 100 US gpm	³ /₄ US gpm
	0.46 to 22.73 m³/h	1.1 to 22.7 m³/h	0.17 m³/h
2"	2 ¹ / ₂ to 160 US gpm	8 to 160 US gpm	1 US gpm
	0.57 to 36.36 m ³ /h	1.8 to 36.3 m³/h	0.23 m³/h

Dimensions


Meter Size	A in/mm	B in/mm	C-Std. in/mm	C-ARB in/mm	C- E-CODER®) R900 <i>i</i> ™ or ProCoder™) R900 <i>i</i> ™	D- Threads per inch	D- Thread Type	E in/mm	Weight lbs/kg
1 ½" Screw End	12 ½ 321	8 ¹ ⁄16 205	8 ½ 206	8 ¹³ ⁄ ₁₆ 220.3	8 ³ / ₈ 213	11 ¹ / ₂	1 ¹ / ₂ NPT	2 ^{9/} 16 65	31 14.1
1 ½" Flanged End	13 330	8 ¼ ₁₆ 205	8 ½ 206	8 ¹³ ⁄ ₁₆ 220.3	8 ³/ ₈ 213	_	_	2 ⁹ / ₁₆ 65	35 15.9
2" Screw End	15 ¼ 387	9 7⁄ ₁₆ 240	9 ⁵⁄ ₁₆ 237	9 ¹⁵ ⁄ ₁₆ 248.4	9 ¹ / ₂ 241	11 ¹ / ₂	2" NPT	3 ¹ / ₈ 79	40 18.1
2" Flanged End	17 432	9 7⁄ ₁₆ 240	9 ⁵⁄ ₁₆ 237	9 ¹⁵ ⁄ ₁₆ 248.4	9 ¹ / ₂ 241		_	3 ¹ / ₈ 79	44 20.0


T-10 With Standard Register

T-10 With E-CODER[®])R900*i*[™] or ProCoder[™])R900*i*[™] Pit Register

Guaranteed Systems Compatibility

All T-10 meters are guaranteed adaptable to our ARB®V, ProRead[™] (ARB VI), ProCoder[™], E-CODER® (ARB VII), E-CODER[®])R900*i*[™], E-CODER[®])R450*i*[™], Maximum Operating Water Pressure ProCoder[™])R900 $i^{™}$, TRICON[®]/S, TRICON/E[®]3, and Neptune ARB[®] Utility Systems[™] without removing the meter from service.

Specifications

Certification

• NSF/ANSI 61, NSF/ANSI 372

Application

- Cold water measurement of flow in one direction
- 150 psi (1,034 kPa)
- Maximum Operating Water Temperature • 80°F

Measuring Chamber

• Nutating disc technology design made from proprietary synthetic polymer

Registration			, , , , , , , , , , , , , , , , , , , ,
ProRead Registration (per sweep hand rev	า olution)	1 ½″	2″
100	US Gallons	1	1
100	Imperial Gallons	1	1
10	Cubic Feet	1	1
1	Cubic Metre		1
.01	Cubic Metre	1	
Register Capacity ProRead, ProCoder, a	ind E-CODER	1 ½″	2"
100,000,000	US Gallons	1	1
100,000,000	Imperial Gallons	1	1
10,000,000	Cubic Feet	1	1
100,000	Cubic Metres	√ *	
1,000,000	Cubic Metres	√ **	1
E-CODER High Resolu	tion (8-digit reading)	1 ½″	2″
1	US Gallons	1	1
1	Imperial Gallons	1	1
0.1	Cubic Feet	1	1
0.01	Cubic Metres		1
0.001	Cubic Metres	1	
ProCoder High Resol	ution (8-digit reading)	1 ½″	2″
1	US Gallons	1	1
1	Imperial Gallons	1	1
0.1	Cubic Feet	1	1
0.01	Cubic Metres	1	1

*ProRead and E-CODER only **ProCoder only

© 2020 Neptune Technology Group Inc. All Rights Reserved. The trademarks, logos and service marks displayed in this document herein are the property of Neptune Technology Group Inc., its affiliates or other third parties. Availability and technical specifications are subject to change without notice. 20-004232 PS T-10 INTERMEDIATE 04.20

Options

Sizes

- 1 ¹/₂" flanged or threaded end
- 2" flanged or threaded end

Units of Measure

• U.S. gallons, imperial gallons, cubic feet, cubic metres

Register Types

- Direct reading: Bronze box and cover
- Remote reading: ProRead Absolute Encoder, ProCoder, E-CODER, E-CODER)R900i, E-CODER)R450i, ProCoder[™])R900*i*[™], TRICON/S, TRICON/E3
- Reclaim

Measuring Chamber

- Synthetic polymer
- **Companion Flanges**
- Lead free, high-copper alloy

Environmental Conditions

- Operating temperature: +33°F to +149°F (0°C to +65°C)
- Storage temperature:
- +33°F to +158°F (0°C to +70°C)
- Test Ports
- 1" (optional)

#winyourday neptunetg.com

Neptune Technology Group

1600 Alabama Highway 229 Tallassee, AL 36078 800-633-8754 f 334-283-7293

Job Name	Contractor
Job Location	Approval
Engineer	Contractor's P.O. No.
Approval	Representative

Series 957, 957N, 957Z **Reduced Pressure Zone Assemblies**

Sizes: 21/2" - 10"

Series 957, 957N, 957Z Reduced Pressure Zone Assemblies provide protection to the potable water system from contamination in accordance with national plumbing codes. Series 957, 957N, 957Z are normally used in health hazard applications for protection against backsiphonage or backpressure.

Series 957 is also available with SentryPlus[™] Alert technology to detect catastrophic relief valve discharge that could potentially cause flooding, and issue a multi-channel alert (call, email, text) to selected users so they can take action to avoid potentially costly flooding.

Features

- 2¹/₂". 3" and 4" sizes available with quarter-turn ball valve shutoffs
- Replaceable check disc rubber
- Extremely compact design
- 70% Lighter than traditional designs
- 304 (Schedule 40) stainless steel housing & sleeve
- · Groove fittings allow integral pipeline adjustment
- Patented torsion spring checks provide lowest pressure loss
- Unmatched ease of serviceability
- Bottom mounted cast stainless steel relief valve
- · Available with grooved butterfly valve shutoffs

NOTICE

Inquire with governing authorities for local installation requirements

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

Specifications

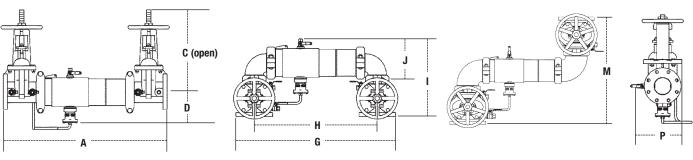
The Reduced Pressure Zone Assembly shall consist of two independent torsion spring check modules, a differential pressure relief valve located between and below the two modules, two drip tight shutoff valves, and required torsion spring check modules and relief valve shall be contained with a sleeve accessible single housing constructed from 304 (Schedule 40) stainless steel pipe with groove end connections. Torsion spring checks shall have replaceable elastomer discs and in operation produce drip tight closure against the reverse flow of liquid caused by backpressure or backsiphonage. Assembly shall be a Watts Regulator Company Series 957, 957N, 957Z.

NOTICE

When installing a drain line on Series 957 backflow preventers, use 957AG air gaps. See ES-AG/EL/TC for additional information.

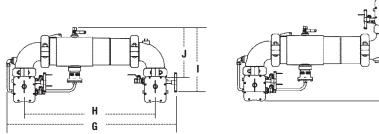
Available Models & Options

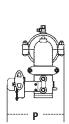
Suffix:


- NRS non-rising stem, resilient seated gate valves
- OSY UL/FM outside stem and yoke resilient seated gate valves
- BFG UL/FM grooved gear operated butterfly valves with tamper switch
- QT 21/2" 4" (65 100mm) quarter-turn ball valves
- *OSY FxG Flanged inlet gate connection and grooved outlet gate connection
- **OSY GxF Grooved inlet gate connection and flanged outlet gate connection
- ***OSY GxG –Grooved inlet gate connection and grooved outlet gate connection

****ALERT with SentryPlus[™] Alert flood detection system

*Available with grooved NRS gate valves – consult factory


Post indicator plate and operating nut available – consult factory *Consult factory for dimensions


**** Not available with the 957N or 957Z

957, 957N, 957Z

SIZE	IZE DIMENSIONS													WEIGHT														
	ļ	ł	C (OSY)	C (NF	RS)	D		(3		Н	I		J		N	1	Р		957	NRS	957	OSY	957N	I NRS	957N	I OSY
in.	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.	lbs.	kgs.	lbs.	kgs.	lbs.	kgs.
2 ¹ / ₂	30¾	781	16¾	416	9 ¾	238	6½	165	29 ¹ /16	738	21 ½	546	15½	393	8 ¹³ ⁄16	223	211⁄4	540	9 ³ ⁄16	234	118	54	128	58	126	57	136	62
3	31 ³ ⁄4	806	181/8	479	10¼	260	6 ¹ / ₁₆	170	301⁄4	768	22 ¹ / ₄	565	171//8	435	9 ³ ⁄16	233	23	584	101/2	267	134	61	148	67	147	67	161	73
4	33¾	857	223⁄4	578	12 ³ ⁄16	310	7	178	33	838	23 ½	597	18½	470	9 ¹⁵ / ₁₆	252	261/4	667	11 ³ ⁄16	284	164	74	164	74	187	85	187	85
6	43 ¹ / ₂	1105	301/8	765	16	406	8 ½	216	44 ³ ⁄4	1137	331/2	851	23 ³ ⁄16	589	13 ¹ /16	332	34¼	870	15	381	276	125	298	135	317	144	339	154
8	49 ³ ⁄ ₄	1264	37 ¾	959	19 ¹⁵ ⁄16	506	9 ¹¹ / ₁₆	246	54½	1375	401/8	1019	27 ⁷ /16	697	15 ¹ / ₁₆	399	367/8	937	17 ³ ⁄16	437	441	200	483	219	516	234	558	253
10	57¾	1467	45¾	1162	23 ¹³ /16	605	11 ³ ⁄16	285	66	1676	49 ½	1257	321/2	826	17 5⁄16	440	44 ¹ / ₂	1124	20	508	723	328	783	355	893	405	950	431

957NBFG, 957ZBFG

SIZE	DIMENSIONS													WEIGHT	
	G		Н		I		J		М		Р		957N/957Z		
in.	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.	
2 ¹ / ₂	32 ¹ / ₂	826	23	584	15½	394	91/2	241	19¾	502	11 ¹³ ⁄16	300	67	30	
3	34	864	24	610	16 ⁵ ⁄16	414	10 ¹ ⁄16	256	211/4	540	121/8	308	70	32	
4	35%	905	25 ½	648	17 ³ ⁄16	437	10 ¹⁵ ⁄16	279	23 ½	597	125%	321	87	39	
6	461/2	1181	35¼	895	201/2	521	13½	343	271/4	692	15	382	160	73	

Noryl[®] is a registered trademark of SABIC Innovative Plastics Holding BV.

Dimensions - Weight

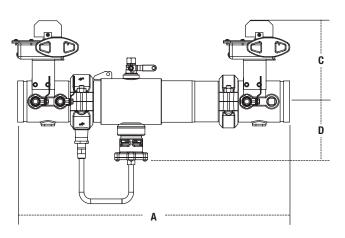
Materials

Housing & Sleeve: 304 (Schedule 40) Stainless Steel Elastomers: EPDM, Silicone and Buna-N Torsion Spring Checks: Noryl[®], Stainless Steel Check Discs: Reversible Silicone or EPDM Test Cocks: Lead Free* Bronze Body Pins & Fasteners: 300 Series Stainless Steel Springs: Stainless Steel

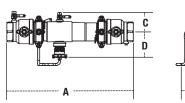
Pressure - Temperature

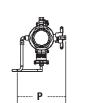
Temperature Range: 33°F – 140°F (0.5°C – 60°C) Maximum Working Pressure: 175psi (12.1 bar)

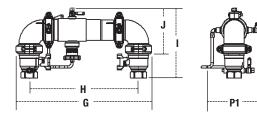
Dimensions - Weight continued

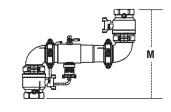

Approvals

- Approved by the Foundation for Cross-Connection Control and Hydraulic Research at The University of Southern California (FCCCHR-USC) (Excluding 'N' Pattern – 10", 'Z' Pattern – 6" and 10")
- AWWA C511-97


For additional approval information please contact the factory or visit our website at Watts.com


P



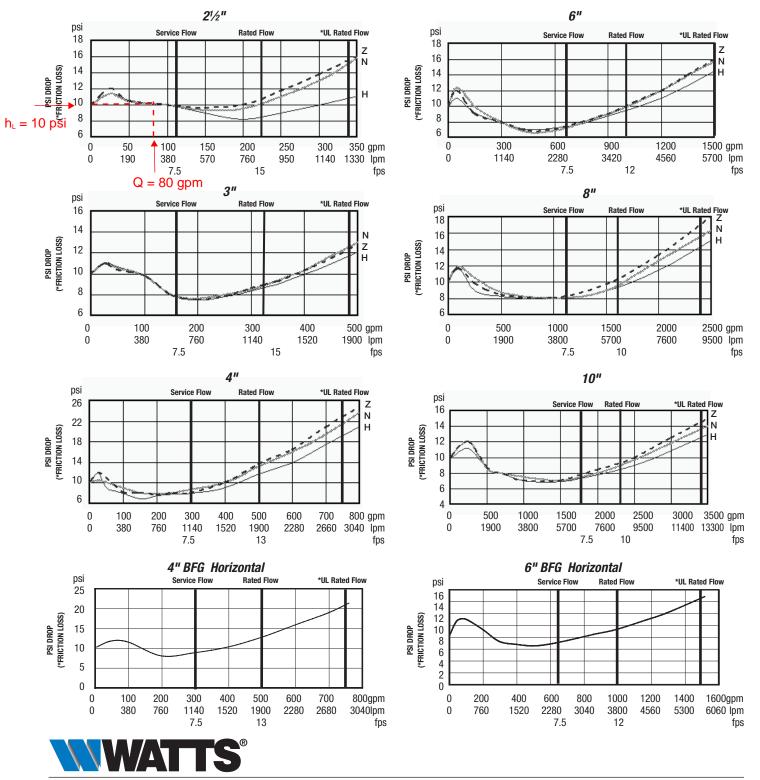

957 BFG

SIZE		DIMENSIONS											
	A		0	;	D)	Р						
in.	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.			
4	29	737	7¾	197	6%	162	91/2	241	66	30			
6	36½	927	9 ¹¹ / ₁₆	246	71/16	189	14¼	362	122	55			

957Q 1	I
---------------	---

SIZE											DIMENSION	NS										WE	GHT	
	A		(0		D	6	ì	ł	ł	I		J		Ν	Λ	Р		P1		Q	Т		QTN
in.	in. m	т	in.	тт	in.	тт	in.	тт	in.	тт	in. m	nm	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.	lbs.	kgs.
2 ¹ / ₂	271/2 69	8	4 ⁷ / ₈	124	67/8	175	301/4	768	21 ½	546	16 ¹ /16 40	07	11%	289	197/8	505	11 ⁵ ⁄16	287	11 ⁵ ⁄16	287	46	21	57	26
3	28 71	1	4 ⁷ /8	124	6 ⁷ /8	175	301/4	768	22 ¹ / ₄	565	16%16 42	20	11%	289	207/8	531	11 ⁵ ⁄16	287	11 ⁵ ⁄16	287	56	25	67	30
4	283/4 73	0	4 ⁷ / ₈	124	67/8	175	301/4	768	23 ½	597	185/16 46	65	11%	289	24 ³ /8	619	11 ⁵ ⁄16	287	11 ⁵ ⁄16	287	76	34	87	39

Capacity


Series 957, 957N, 957Z flow curves as tested by Underwriters Laboratory.

Flow characteristics collected using butterfly shutoff valves

------ Horizontal ------ N-Pattern ----- Z-Pattern

Flow capacity chart identifies valve performance based upon rated water velocity up to 25fps

- Service Flow is typically determined by a rated velocity of 7.5fps based upon schedule 40 pipe.
- Rated Flow identifies maximum continuous duty performance determined by AWWA.
- UL Flow Rate is 150% of Rated Flow and is not recommended for continuous duty.
- AWWA Manual M22 [Appendix C] recommends that the maximum water velocity in services be not more than 10fps.

USA: T: (978) 689-6066 • F: (978) 975-8350 • Watts.com Canada: T: (888) 208-8927 • F: (888) 479-2887 • Watts.ca Latin America: T: (52) 55-4122-0138 • Watts.com

Job Name	Contractor
Job Location	Approval
Engineer	Contractor's P.O. No.
Approval	Representative

Series LF757DCDA, LF757NDCDA

Double Check Detector Assemblies Sizes: 2¹/₂" – 10"

Series LF757DCDA, LF757NDCDA Double Check Detector Assemblies are used to prevent backflow of non-health hazard pollutants that are objectionable but not toxic, from entering the potable water supply system. The LF757DCDA, LF757NDCDA may be installed under continuous pressure service and may be subjected to backpressure and backsiphonage. Series LF757DCDA, LF757NDCDA is used primarily on fire line sprinkler systems when it is necessary to monitor unauthorized use of water.

Features

- Lead Free* construction
- Extremely compact design
- 70% lighter than traditional designs
- 304 (Schedule 40) stainless steel housing & sleeve
- Groove fittings allow integral pipeline adjustment
- Unique tri-link spring check provides lowest pressure loss
- Unmatched ease of serviceability
- Available with grooved butterfly valve shutoffs
- May be used for horizontal, vertical or N pattern installations
- Replaceable check disc rubber

Specifications

The Lead Free* Double Check Detector Assembly shall consist of two independent tri-link check modules within a single housing, sleeve access port, four test cocks and two drip tight shutoff valves. Tri-link checks shall be removable and serviceable, without the use of special tools. The housing shall be constructed of 304 Schedule 40 stainless steel pipe with groove end connections. Tri-link checks shall have reversible elastomer discs and in operation shall produce drip tight closure against reverse flow caused by backpressure or backsiphonage. The bypass assembly shall consist of a meter, which registers in either gallon or cubic measurement, a double check backflow assembly and required test cocks. Assembly shall be a Watts Series LF757DCDA, LF757NDCDA.

LF757DCDAOSY

LF757NDCDAOSY

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

Available Models

Suffix:

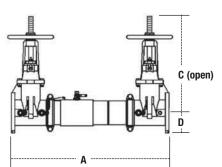
- OSY UL/FM outside stem and yoke resilient seated gate valves
- BFG UL/FM grooved gear operated butterfly valves with tamper switch
- **OSY FxG Flanged inlet gate connection and grooved outlet gate connection
- **OSY GxF Grooved inlet gate connection and flanged outlet gate connection
- **OSY GxG Grooved inlet gate connection and grooved outlet gate connection

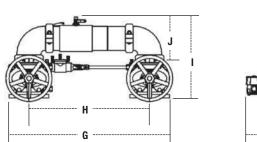
Available with grooved NRS gate valves - consult factory** Post indicator plate and operating nut available - consult factory** **Consult factory for dimensions

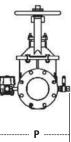
Dimensions - Weight

Materials

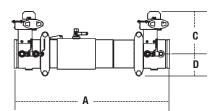
Housing & Sleeve: 304 (Schedule 40) Stainless Steel Elastomers: EPDM, Silicone and Buna-N Tri-link Checks: Noryl[®], Stainless Steel Check Discs: Reversible Silicone or EPDM Test Cocks: Lead Free* Bronze Body Pins & Fasteners: 300 Series Stainless Steel Springs: Stainless Steel

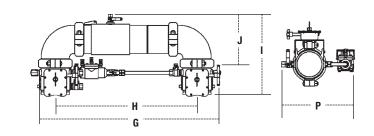

Pressure - Temperature


Temperature Range: 33°F – 140°F (0.5°C – 60°C) Maximum Working Pressure: 175psi (12.1 bar)


Approvals

- Approved by the Foundation for Cross-Connection Control and Hydraulic Research at The Unversity of Southern California (FCCCHR-USC)
- AWWA C510-97



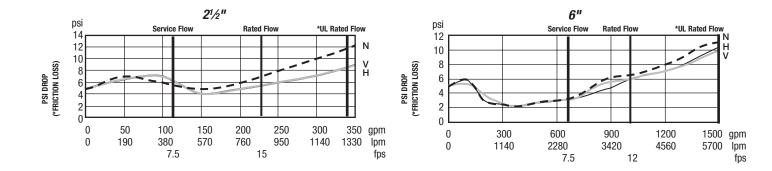


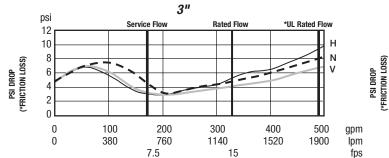
LF757DCDA, LF757NDCDA

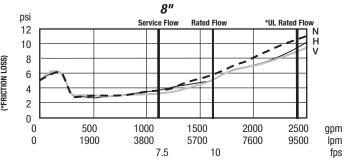
SIZE								DIMEN	ISIONS									WEI	GHT	
	A	ł	C (0	OSY)	C)	(3	I	1			J		P)	LF757	DCDA	LF757	NDCDA
in.	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.	lbs.	kgs.
21/2	303⁄4	781	16¾	416	31/2	89	29 ¹ /16	738	21 ½	546	15½	393	8 ¹³ /16	223	13 ³ ⁄16	335	139	63	147	67
3	31¾	806	181/8	479	3 ¹¹ /16	94	301/4	768	221/4	565	171//8	435	9 ³ ⁄16	233	141/2	368	159	72	172	78
4	333⁄4	857	22 ³ / ₄	578	4	102	33	838	231/2	597	181/2	470	9 ¹⁵ /16	252	15 ³ ⁄16	386	175	79	198	90
6	431/2	1105	30 1//8	765	51/2	140	443/4	1137	331/4	845	23 ³ ⁄16	589	13 ¹ ⁄16	332	19	483	309	140	350	159
8	49¾	1264	373/4	959	6 ¹¹ /16	170	541/8	1375	401/8	1019	271/16	697	15 ¹¹ /16	399	21 ³ ⁄16	538	494	224	569	258
10	573/4	1467	45¾	1162	8 ³ /16	208	66	1676	49 ½	1257	321/2	826	175/16	440	24	610	795	361	965	438

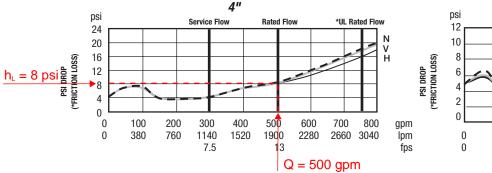
LF757DCDABFG, LF757NDCDABFG

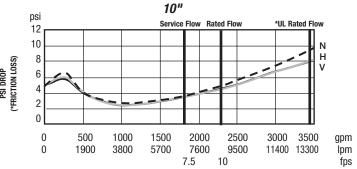
SIZE								DIMEN	ISIONS									WE	IGHT	
	l A	ł		С	[)		ì		1			J		F)	LF757D	CDABFG	LF757ND	CDA BFG
in.	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kgs.	lbs.	kgs.
2 ¹ / ₂	273/4	705	8	203	31/2	89	297/8	759	21½	546	14 ¹⁵ / ₁₆	379	8 ¹³ ⁄16	223	13	330	70	32	78	35
3	281/4	718	85/16	211	3 ¹¹ /16	94	30 ¹¹ / ₁₆	779	221/4	565	157/16	392	9 ³ ⁄16	233	131/2	343	68	31	81	37
4	29	737	8 ¹⁵ /16	227	3 ¹¹ /16	94	31 ¹⁵ /16	811	231/2	597	16¼	412	9 ¹⁵ /16	252	14	356	75	34	98	44
6	361/2	927	10	254	5	127	43 ³ ⁄16	1097	33¼	845	19 ¹¹ / ₁₆	500	13 ¹ /16	332	14½	368	131	59	171	78
8	423/4	1086	121/4	311	61/2	165	51 ¹ ⁄16	1297	401/8	1019	235/16	592	15 ¹¹ /16	399	18 ³ ⁄16	462	275	125	351	159

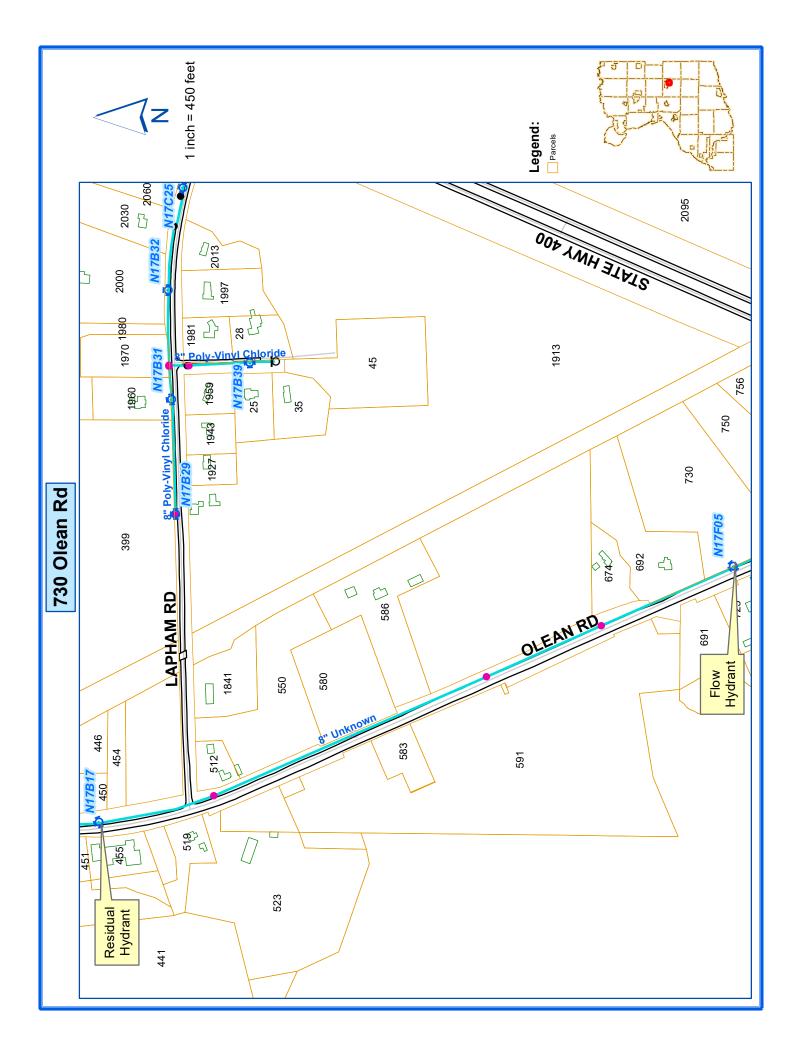

Noryl® is a registered trademark of General Electric Company.

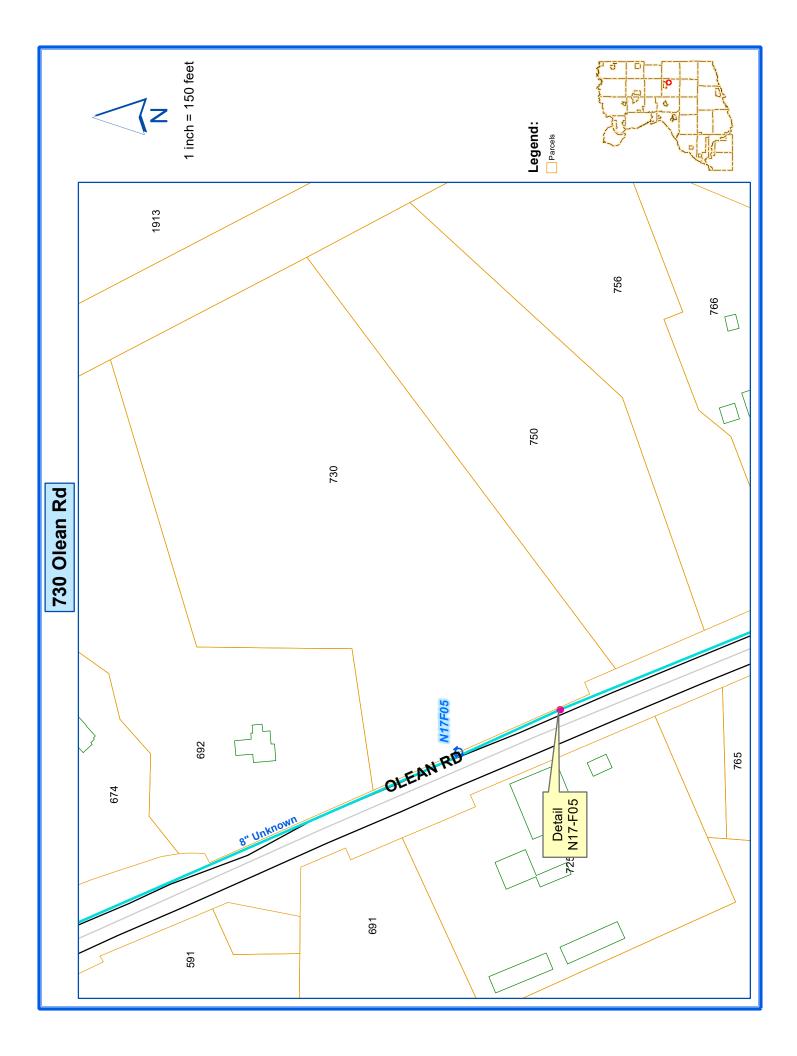

Capacity


Series LF757DCDA flow curves as tested by Underwriters Laboratory. Flow characteristics collected using butterfly shutoff valves

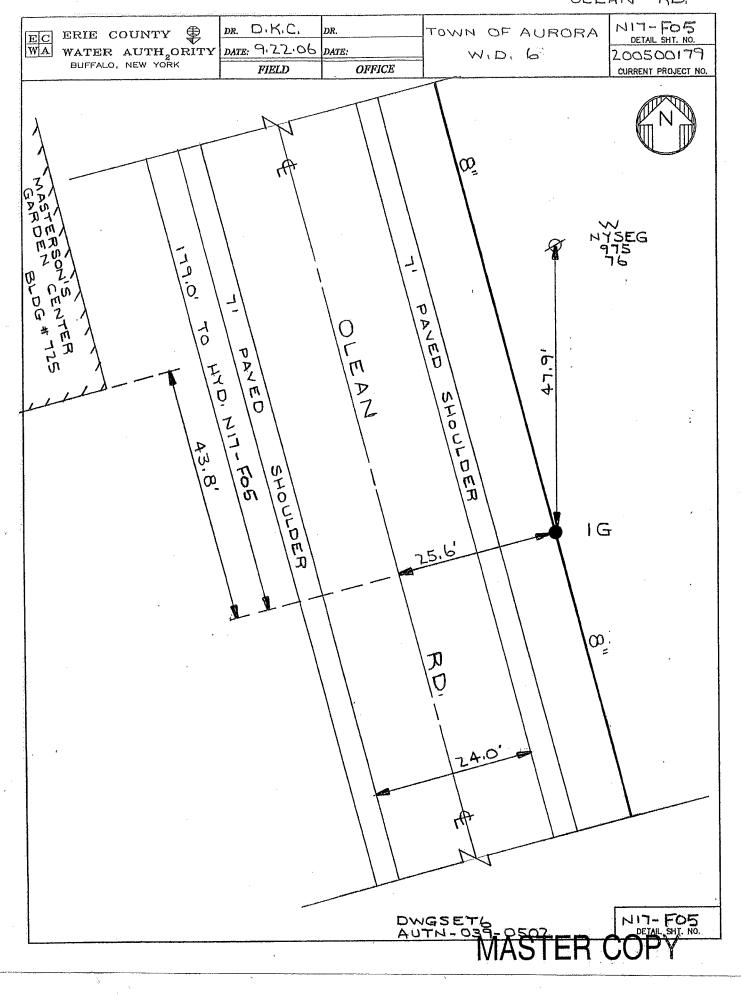

Flow capacity chart identifies valve performance based upon rated water velocity up to 25fps


- Service Flow is typically determined by a rated velocity of 7.5fps based upon schedule 40 pipe.
- Rated Flow identifies maximum continuous duty performance determined by AWWA.
- UL Flow Rate is 150% of Rated Flow and is not recommended for continuous duty.
- AWWA Manual M22 [Appendix C] recommends that the maximum water velocity in services be not more than 10fps.




NOTICE

Inquire with governing authorities for local installation requirements



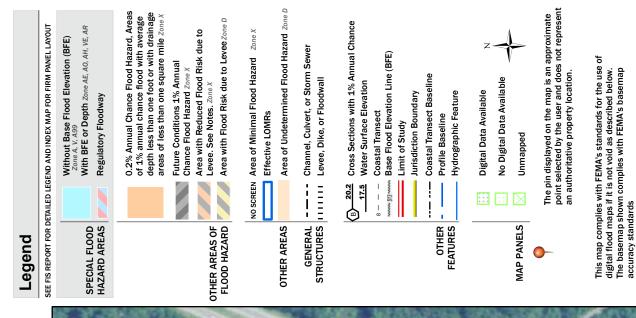
DWP Hydrant Flow Test Inqu Address: 450 OLEAN RD	iry Hydrant: N17B17 Test Date/Time: Side: E Location: 1ST HYD N/O LAPH	
AURORA	District, 24020 FIDE PROTECT DICT 1	Water District, OFO SCHA ADEA TOWN OF AUDODA
Size of Main/Branch: 8"/6" Fire	District: 24020 FIRE PROTECT DIST 1	Water District: 059 ECWA AREA-TOWN OF AURORA
Performed By: BM, RLS	Comments: HYDRANT FLOW TEST REQUEST PHONE: 1-585-978-1281; FA	
Dischrge Coef: .90 Elvtn Usgs(ft): Gallons Used:		56 Required Residual Pressure(psi): 20 1,138 Flow at Reqd Resid Pressure: 2,857
Flow Hydrants: <u>C Elow Hyd Elow Hydrant Address</u> <u>N17 F05 OP 725 OLEAN RD</u>	Main/Brnch Nzle Size Pitot Flow 8"/6" 1: 2.50 46.0 1,138	
9TH HYD N/O BLAKELEY RD	2: 3:	Tot Flow: 1,138

I=Flow Hydrant Inquiry ENTER=Continue F3=Exit F6=Maintain Test F7=Test Hydrant Inquiry F15=Print Test Information Bottom

ULEAN KU

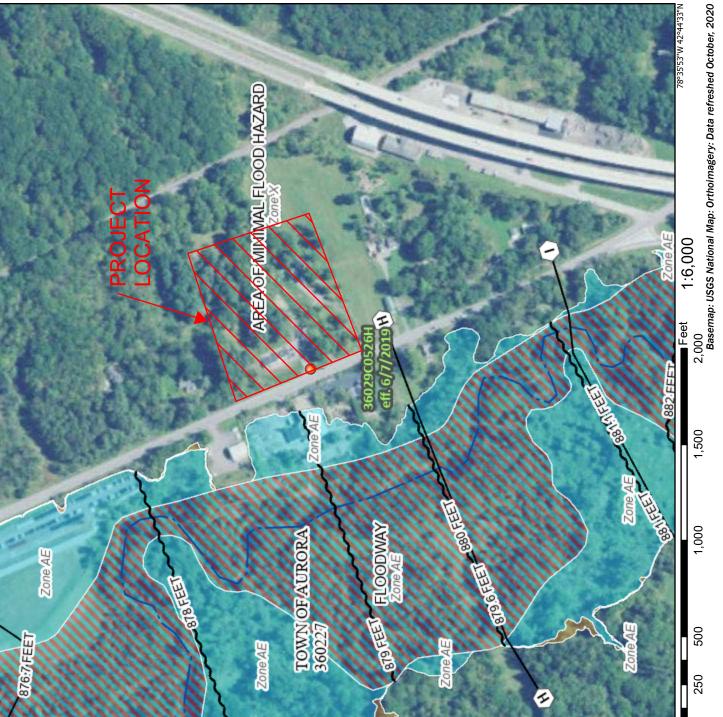

Service No: 906000981 Location Id: 24	5145 Print Date: 1/11/2021
730 OLEAN RD	Cross Streets LAPHAM RD (NSEW): N RTE 400 (NSEW): S
ECWA Service Information: Service Size: 1" Depth.: .0 Type: RES: Matl @ Main/Src: COPPER/SRVC MATL Matl @ Box/Src.: COPPER/SRVC MATL Main Size/Type.: 8" PV Side of Street Color of Main: WHITE	Matl @ Box/Src.: COPPER/SRVC MATL Matl @ Met/Src.: COPPER/MET ORD
Service Started: 7/01/2015 Date Tapped: 6/14/2015 Date Replaced. Field Book/Page:	:
Description of Curb Box Measurements 74.0 HOUSE TO BOX, 2.0 BOX TO MAIN, 10.0 LEFT OF LHC,	MaterialsSADDLE8" X 1"CORP1"COPPER2' 1"C+C STOP1"95E BOX
N+ 74.0 < 10.0 >. 2.0 8"	See attached image documents

		0000			
Location:			CEAN .	co,	Town: AUT~
Inspected by	y: 65	·1			Inspection Date:
Qty.	Unit	CONT	RACT ITEMS	(circle one)	
				1%"-2"	Description
	Each			1A2	Basic Service: Cast Iron: Ductile, Asbestos
	Each	·	1B1	1B2	Basic Service - Prestressed Concrete Pipe
1	Each		(ICP	1C2	Basie Service - PVC
	Each		1D1	1D2	Service Replacement in Pavement Driveway or Parking Lot
	Each		1D3	1D4	Service Replacement in Grass
	LF		2A1	2A2_	Pushing - Open Trench - Boring (Copper tubing >10'):
-	LF-			,`2A4 ,	Pushing - Open Trench - Boring (Poly tubing >10')
and the second	Each		1-new of 3A2	existing	Meter Box Settings (New Service - Existing Service)
	CY	4A1			Rock Excavation
	LF	4B1			Rock Drilling (3/" thru 2"; up to 10 feet)
	.LF	\ <u>`</u>	4B2		Rock Drilling (¾" thru 1"? beyond 10 feet).
	_ LF.	<u> </u>		4B3	Rock Drilling (1½" thru 2"; beyond 10 feet);
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CY	5A1	· · · · · · · · · · · · · · · · · · ·	·····	Test Pit Excavation and Backfill
	Hrs	7A1			Crew Labor and Equipment
-1422	Hrs	7A2			Dump Truck with Operator
2	FT Tota	y	+		Installation Type: O / L (Circle onc)
	11100	1 Instant			
	. M	ATERI	ALS	· · · · · · · · · · · · · · · · · · ·	House NSEW
DESCRIP	TION		SIZE		Cross Streets
addle		8	3 x 7	Brass	Capilan Rd NSEW:
огр		5/8	34" (1)	11/2" 2"-	
			3/1 (1)	i source find the	Service Size: L Depth
& C Stop	2				
	S F	t		11/2" 2"	Main Size: <u>8</u> O.D.:
urb Box			<u>(95)</u>	145R	Main Type: <u>Puc</u> Side of St (NSEW) <u>E</u>
ile Setting M	eter No.,				Main Color: Wh. IE
D	~ In	11.5	Data Dan	1000-l	Field Book: Page:
Date Tapped:		•••••••			
IAGRAM O	F SERVI	CE		···	CURB BOX MEASUREMENTS
· · · ·			730		House to Box 74 '
	.÷				N + Box to Main 2 '
		·		. * .	$\begin{array}{c c} Lof L \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$
· * :		74,	t a c		
	. ľ	1	4		
• •	· · • •	1	• •		
	. 1		1		Service Notes:
	· · •		2 		
	: L	10	•		
	\mathcal{O}	, C- > '	1	÷	
•	22		·		pue maint
	· · · ·				
· · · ·		. •		· ~/	- I Rol
				014	<u>2a.J. / UL</u> 21
xcavation No	tes			· .	
A]]4	t; <u> </u>	·			Contractor Name:
Asphalt	·				Foreman's Name: JEFF STIS
Concrete			ang tigat nang		Vendor No. V 2286
Concrete oad Shoulder	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		i	Vendor No.: U7286 Address: 3710 Milestein 20
Concrete		. A	· · · · · · · · · · · · · · · · · · ·		Vendor No.: U7286 Address: 3710 Milestrip 72 Telephone: 716 - 844 = 9745


APPENDIX E

FEMA FIRMette MAP

National Flood Hazard Layer FIRMette



The flood hazard information is derived directly from the accuracy standards

authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or was exported on 5/7/2021 at 3:12 PM and does not become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

www.cscos.com | (877) CS-SOLVE

rinted on 50% recycled paper, including 25% post-consumer waste